Share:
Share this content in WeChat
X
Review
Advances in time-dependent diffusion MRI for tumor diagnosis and treatment response evaluation
LI Yanwan  CHEN Xiaoli 

Cite this article as: LI Y W, CHEN X L. Advances in time-dependent diffusion MRI for tumor diagnosis and treatment response evaluation[J]. Chin J Magn Reson Imaging, 2025, 16(3): 228-234. DOI:10.12015/issn.1674-8034.2025.03.039.


[Abstract] Time-dependent diffusion magnetic resonance imaging (TDD-MRI) is an emerging diffusion-weighted imaging technique, which can non-invasively quantify neoplastic cellular microstructural parameters such as cell diameter and cellularity, through established mathematical models fitting diffusion MRI data from using of oscillating gradient spin echo and pulsed gradient spin echo. TDD-MRI has been extensively investigated in oncology, including its application in differentiating benign from malignant tumors, evaluating tumor staging, and predicting tumor invasiveness, thereby demonstrating promising diagnostic performance. Consequently, this review aims to summarize the clinical research value and potential applications of TDD-MRI in tumors such as those of the head and neck, prostate, and breast, with the goal of providing insights for future research.
[Keywords] magnetic resonance imaging;diffusion-weighted imaging;time-dependent diffusion magnetic resonance imaging;oscillating gradient spin echo;tumor

LI Yanwan1, 2   CHEN Xiaoli2*  

1 School of Medicine University of Electronic Science and Technology of China, Chengdu 610051, China

2 Department of Radiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China

Corresponding author: CHEN X L, E-mail: xiaolichen20@163.com

Conflicts of interest   None.

Received  2024-10-08
Accepted  2025-02-27
DOI: 10.12015/issn.1674-8034.2025.03.039
Cite this article as: LI Y W, CHEN X L. Advances in time-dependent diffusion MRI for tumor diagnosis and treatment response evaluation[J]. Chin J Magn Reson Imaging, 2025, 16(3): 228-234. DOI:10.12015/issn.1674-8034.2025.03.039.

[1]
WU D, JIANG K W, LI H, et al. Time-dependent diffusion MRI for quantitative microstructural mapping of prostate cancer[J]. Radiology, 2022, 303(3): 578-587. DOI: 10.1148/radiol.211180.
[2]
JIANG X Y, XU J Z, GORE J C. Mapping hepatocyte size in vivo using temporal diffusion spectroscopy MRI[J]. Magn Reson Med, 2020, 84(5): 2671-2683. DOI: 10.1002/mrm.28299.
[3]
CHEN J, WU Z R, ZHANG Z, et al. Apparent diffusion coefficient and tissue stiffness are associated with different tumor microenvironment features of hepatocellular carcinoma[J]. Eur Radiol, 2024, 34(11): 6980-6991. DOI: 10.1007/s00330-024-10743-2.
[4]
WU D, MARTIN L J, NORTHINGTON F J, et al. Oscillating-gradient diffusion magnetic resonance imaging detects acute subcellular structural changes in the mouse forebrain after neonatal hypoxia-ischemia[J]. J Cereb Blood Flow Metab, 2019, 39(7): 1336-1348. DOI: 10.1177/0271678X18759859.
[5]
PANG H P, DANG X F, CHEN Z G, et al. High-resolution diffusion-weighted imaging of C6 glioma on a 7T BioSpec MRI scanner: correlation of tumor cellularity and nuclear-to-cytoplasmic ratio with apparent diffusion coefficient[J/OL]. Acad Radiol, 2022, 29(Suppl 3): S80-S87 [2024-10-07]. https://pubmed.ncbi.nlm.nih.gov/34148856/. DOI: 10.1016/j.acra.2021.02.009.
[6]
LI H, JIANG X Y, XIE J P, et al. Time-dependent influence of cell membrane permeability on MR diffusion measurements[J]. Magn Reson Med, 2016, 75(5): 1927-1934. DOI: 10.1002/mrm.25724.
[7]
JIANG X Y, LI H, XIE J P, et al. Quantification of cell size using temporal diffusion spectroscopy[J]. Magn Reson Med, 2016, 75(3): 1076-1085. DOI: 10.1002/mrm.25684.
[8]
ZHANG H X, LIU K Y, BA R C, et al. Histological and molecular classifications of pediatric glioma with time-dependent diffusion MRI-based microstructural mapping[J]. Neuro Oncol, 2023, 25(6): 1146-1156. DOI: 10.1093/neuonc/noad003.
[9]
HERRERA S L, SHEFT M, MERCREDI M E, et al. Axon diameter inferences in the human corpus callosum using oscillating gradient spin echo sequences[J/OL]. Magn Reson Imaging, 2022, 85: 64-70 [2024-10-07]. https://pubmed.ncbi.nlm.nih.gov/34662703/. DOI: 10.1016/j.mri.2021.10.014.
[10]
MCDOWELL A R, FEIWEIER T, MUNTONI F, et al. Clinically feasible diffusion MRI in muscle: time dependence and initial findings in Duchenne muscular dystrophy[J]. Magn Reson Med, 2021, 86(6): 3192-3200. DOI: 10.1002/mrm.28945.
[11]
ZHANG L J, LONG X, CHEN L Q, et al. Detecting cellular microstructural changes of liver fibrosis with time-dependent diffusion MRI[J/OL]. Radiology, 2024, 313(1): e240343 [2024-10-07]. https://pubmed.ncbi.nlm.nih.gov/39352282/. DOI: 10.1148/radiol.240343.
[12]
BA R C, WANG X X, ZHANG Z L, et al. Diffusion-time dependent diffusion MRI: effect of diffusion-time on microstructural mapping and prediction of prognostic features in breast cancer[J]. Eur Radiol, 2023, 33(9): 6226-6237. DOI: 10.1007/s00330-023-09623-y.
[13]
DING J, YOU C, GU Y J. Progress of quantitative MRI technology based on time diffusion spectrum[J]. Chin J Radiol, 2023, 57(10): 1124-1127. DOI: 10.3760/cma.j.cn112149-20230311-00179.
[14]
ZHANG X L, WANG J. Advances in diffusion MRI based on oscillating gradient spin echo[J]. Chin J Magn Reson Imag, 2023, 14(9): 198-202. DOI: 10.12015/issn.1674-8034.2023.09.036.
[15]
BA R C, KANG L Y, WU D. Time-dependent diffusion magnetic resonance imaging: measurement, modeling, and applications[J]. J Zhejiang Univ SCIENCE A, 2024, 25(10): 765-787. DOI: 10.1631/jzus.A2400139.
[16]
SOTAK C H. Nuclear magnetic resonance (NMR) measurement of the apparent diffusion coefficient (ADC) of tissue water and its relationship to cell volume changes in pathological states[J]. Neurochem Int, 2004, 45(4): 569-582. DOI: 10.1016/j.neuint.2003.11.010.
[17]
ALBERT E. Investigations on the Theory of the Brownian Movement[J]. Dover Publications, Inc, 1956. https://www2.math.uconn.edu/~gordina/Einstein_Brownian1905.pdf
[18]
HELMER K G, DARDZINSKI B J, SOTAK C H. The application of porous-media theory to the investigation of time-dependent diffusion in in vivo systems[J]. NMR Biomed, 1995, 8(7/8): 297-306. DOI: 10.1002/nbm.1940080705.
[19]
SUROV A, EGER K I, POTRATZ J, et al. Apparent diffusion coefficient correlates with different histopathological features in several intrahepatic tumors[J]. Eur Radiol, 2023, 33(9): 5955-5964. DOI: 10.1007/s00330-023-09788-6.
[20]
GORE J C, XU J Z, COLVIN D C, et al. Characterization of tissue structure at varying length scales using temporal diffusion spectroscopy[J]. NMR Biomed, 2010, 23(7): 745-756. DOI: 10.1002/nbm.1531.
[21]
TAN E T, SHIH R Y, MITRA J, et al. Oscillating diffusion-encoding with a high gradient-amplitude and high slew-rate head-only gradient for human brain imaging[J]. Magn Reson Med, 2020, 84(2): 950-965. DOI: 10.1002/mrm.28180.
[22]
PANAGIOTAKI E, WALKER-SAMUEL S, SIOW B, et al. Noninvasive quantification of solid tumor microstructure using VERDICT MRI[J]. Cancer Res, 2014, 74(7): 1902-1912. DOI: 10.1158/0008-5472.CAN-13-2511.
[23]
REYNAUD O, WINTERS K V, HOANG D M, et al. Pulsed and oscillating gradient MRI for assessment of cell size and extracellular space (POMACE) in mouse gliomas[J]. NMR Biomed, 2016, 29(10): 1350-1363. DOI: 10.1002/nbm.3577.
[24]
SEFERBEKOVA Z, LOMAKIN A, YATES L R, et al. Spatial biology of cancer evolution[J]. Nat Rev Genet, 2023, 24(5): 295-313. DOI: 10.1038/s41576-022-00553-x.
[25]
HANAHAN D. Hallmarks of cancer: new dimensions[J]. Cancer Discov, 2022, 12(1): 31-46. DOI: 10.1158/2159-8290.CD-21-1059.
[26]
KAWASAKI K, REKHTMAN N, QUINTANAL-VILLALONGA Á, et al. Neuroendocrine neoplasms of the lung and gastrointestinal system: convergent biology and a path to better therapies[J]. Nat Rev Clin Oncol, 2023, 20(1): 16-32. DOI: 10.1038/s41571-022-00696-0.
[27]
MASEKI H, JIMBO K, WATASE C, et al. Clinical significance of tumor cell seeding associated with needle biopsy in patients with breast cancer[J]. Asian J Surg, 2023, 46(9): 3700-3704. DOI: 10.1016/j.asjsur.2023.01.026.
[28]
IIMA M, YAMAMOTO A, KATAOKA M, et al. Time-dependent diffusion MRI to distinguish malignant from benign head and neck tumors[J]. J Magn Reson Imaging, 2019, 50(1): 88-95. DOI: 10.1002/jmri.26578.
[29]
MAEKAWA T, HORI M, MURATA K, et al. Differentiation of high-grade and low-grade intra-axial brain tumors by time-dependent diffusion MRI[J/OL]. Magn Reson Imaging, 2020, 72: 34-41 [2024-10-07]. https://pubmed.ncbi.nlm.nih.gov/32599021/. DOI: 10.1016/j.mri.2020.06.018.
[30]
THENUWARA G, CURTIN J, TIAN F R. Advances in diagnostic tools and therapeutic approaches for gliomas: a comprehensive review[J/OL]. Sensors, 2023, 23(24): 9842 [2024-10-07]. https://pubmed.ncbi.nlm.nih.gov/38139688/. DOI: 10.3390/s23249842.
[31]
LOUIS D N, PERRY A, REIFENBERGER G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary[J]. Acta Neuropathol, 2016, 131(6): 803-820. DOI: 10.1007/s00401-016-1545-1.
[32]
BLASCO-SANTANA L, COLMENERO I. Molecular and pathological features of paediatric high-grade gliomas[J/OL]. Int J Mol Sci, 2024, 25(15): 8498 [2024-10-07]. https://pubmed.ncbi.nlm.nih.gov/39126064/. DOI: 10.3390/ijms25158498.
[33]
ZHU A T, SHIH R, HUANG R Y, et al. Revealing tumor microstructure with oscillating diffusion encoding MRI in pre-surgical and post-treatment glioma patients[J]. Magn Reson Med, 2023, 90(5): 1789-1801. DOI: 10.1002/mrm.29758.
[34]
LIU K Y, LIN Z X, ZHENG T S, et al. Improving microstructural estimation in time-dependent diffusion MRI with a Bayesian method[J]. J Magn Reson Imaging, 2025, 61(2): 724-734. DOI: 10.1002/jmri.29434.
[35]
KAMIMURA K, KAMIMURA Y, NAKANO T, et al. Differentiating brain metastasis from glioblastoma by time-dependent diffusion MRI[J/OL]. Cancer Imaging, 2023, 23(1): 75 [2024-10-07]. https://pubmed.ncbi.nlm.nih.gov/37553578/. DOI: 10.1186/s40644-023-00595-2.
[36]
KAMIMURA K, NAKANO T, HASEGAWA T, et al. Differentiating primary central nervous system lymphoma from glioblastoma by time-dependent diffusion using oscillating gradient[J/OL]. Cancer Imaging, 2023, 23(1): 114 [2024-10-07]. https://pubmed.ncbi.nlm.nih.gov/38037172/. DOI: 10.1186/s40644-023-00639-7.
[37]
FERRERI A J M, CALIMERI T, CWYNARSKI K, et al. Primary central nervous system lymphoma[J/OL]. Nat Rev Dis Primers, 2023, 9(1): 29 [2024-10-07]. https://pubmed.ncbi.nlm.nih.gov/37322012/. DOI: 10.1038/s41572-023-00439-0.
[38]
LÄUBLI H, BORSIG L. Altered cell adhesion and glycosylation promote cancer immune suppression and metastasis[J/OL]. Front Immunol, 2019, 10: 2120 [2024-10-07]. https://pubmed.ncbi.nlm.nih.gov/31552050/. DOI: 10.3389/fimmu.2019.02120.
[39]
KOMORI T. Grading of adult diffuse gliomas according to the 2021 WHO classification of tumors of the central nervous system[J]. Lab Invest, 2022, 102(2): 126-133. DOI: 10.1038/s41374-021-00667-6.
[40]
MAEKAWA T, HORI M, MURATA K, et al. Investigation of time-dependent diffusion in extra-axial brain tumors using oscillating-gradient spin-echo[J/OL]. Magn Reson Imaging, 2023, 96: 67-74 [2024-10-07]. https://pubmed.ncbi.nlm.nih.gov/36423796/. DOI: 10.1016/j.mri.2022.11.010.
[41]
PANAGIOTAKI E, CHAN R W, DIKAIOS N, et al. Microstructural characterization of normal and malignant human prostate tissue with vascular, extracellular, and restricted diffusion for cytometry in tumours magnetic resonance imaging[J]. Invest Radiol, 2015, 50(4): 218-227. DOI: 10.1097/RLI.0000000000000115.
[42]
SATHIANATHEN N J, KONETY B R, CROOK J, et al. Landmarks in prostate cancer[J]. Nat Rev Urol, 2018, 15(10): 627-642. DOI: 10.1038/s41585-018-0060-7.
[43]
EKLUND M, JÄDERLING F, DISCACCIATI A, et al. MRI-targeted or standard biopsy in prostate cancer screening[J]. N Engl J Med, 2021, 385(10): 908-920. DOI: 10.1056/NEJMoa2100852.
[44]
SINGH S, ROGERS H, KANBER B, et al. Avoiding unnecessary biopsy after multiparametric prostate MRI with VERDICT analysis: the INNOVATE study[J]. Radiology, 2022, 305(3): 623-630. DOI: 10.1148/radiol.212536.
[45]
PALOMBO M, VALINDRIA V, SINGH S, et al. Joint estimation of relaxation and diffusion tissue parameters for prostate cancer with relaxation-VERDICT MRI[J/OL]. Sci Rep, 2023, 13: 2999 [2024-10-07]. https://pubmed.ncbi.nlm.nih.gov/36810476/. DOI: 10.1038/s41598-023-30182-1.
[46]
XU J Z, JIANG X Y, LI H, et al. Magnetic resonance imaging of mean cell size in human breast tumors[J]. Magn Reson Med, 2020, 83(6): 2002-2014. DOI: 10.1002/mrm.28056.
[47]
IIMA M, KATAOKA M, HONDA M, et al. The rate of apparent diffusion coefficient change with diffusion time on breast diffusion-weighted imaging depends on breast tumor types and molecular prognostic biomarker expression[J]. Invest Radiol, 2021, 56(8): 501-508. DOI: 10.1097/RLI.0000000000000766.
[48]
SASTRE-GARAU X, GENIN P, ROUSSEAU A, et al. Increased cell size and Akt activation in HER-2/neu-overexpressing invasive ductal carcinoma of the breast[J]. Histopathology, 2004, 45(2): 142-147. DOI: 10.1111/j.1365-2559.2004.01899.x.
[49]
WANG X Y, ZHANG Y, CHENG J L, et al. Chin J Radiol, 2024, 58(6): 611-619. DOI: 10.3760/cma.j.cn112149-20230910-00176.
[50]
TAN P H, ELLIS I, ALLISON K, et al. The 2019 World Health Organization classification of tumours of the breast[J]. Histopathology, 2020, 77(2): 181-185. DOI: 10.1111/his.14091.
[51]
EJIMA F, FUKUKURA Y, KAMIMURA K, et al. Oscillating gradient diffusion-weighted MRI for risk stratification of uterine endometrial cancer[J]. J Magn Reson Imaging, 2024, 60(1): 67-77. DOI: 10.1002/jmri.29106.
[52]
CAO Y W, LU Y, SHAO W H, et al. Time-dependent diffusion MRI-based microstructural mapping for differentiating high-grade serous ovarian cancer from serous borderline ovarian tumor[J/OL]. Eur J Radiol, 2024, 178: 111622 [2024-10-07]. https://pubmed.ncbi.nlm.nih.gov/39018648/. DOI: 10.1016/j.ejrad.2024.111622.
[53]
DI PALMA T, ZANNINI M. PAX8 as a potential target for ovarian cancer: what we know so far[J/OL]. Onco Targets Ther, 2022, 15: 1273-1280 [2024-10-07]. https://pubmed.ncbi.nlm.nih.gov/36275185/. DOI: 10.2147/OTT.S361511.
[54]
JIANG X Y, LI H, ZHAO P, et al. Early detection of treatment-induced mitotic arrest using temporal diffusion magnetic resonance spectroscopy[J]. Neoplasia, 2016, 18(6): 387-397. DOI: 10.1016/j.neo.2016.04.006.
[55]
JIANG X Y, XU J Z, GORE J C. Quantitative temporal diffusion spectroscopy as an early imaging biomarker of radiation therapeutic response in gliomas: a preclinical proof of concept[J]. Adv Radiat Oncol, 2018, 4(2): 367-376. DOI: 10.1016/j.adro.2018.11.003.
[56]
PORTNOY S, FICHTNER N D, DZIEGIELEWSKI C, et al. In vitro detection of apoptosis using oscillating and pulsed gradient diffusion magnetic resonance imaging[J]. NMR Biomed, 2014, 27(4): 371-380. DOI: 10.1002/nbm.3070.
[57]
HOFFMANN E, GERWING M, NILAND S, et al. Profiling specific cell populations within the inflammatory tumor microenvironment by oscillating-gradient diffusion-weighted MRI[J/OL]. J Immunother Cancer, 2023, 11(3): e006092 [2024-10-07]. https://pubmed.ncbi.nlm.nih.gov/36918222/. DOI: 10.1136/jitc-2022-006092.
[58]
HOFFMANN E, MASTHOFF M, KUNZ W G, et al. Multiparametric MRI for characterization of the tumour microenvironment[J]. Nat Rev Clin Oncol, 2024, 21(6): 428-448. DOI: 10.1038/s41571-024-00891-1.
[59]
CAO Y, DAVARANI S N, YOU D, et al. In vivo microstructure imaging in oropharyngeal squamous cell carcinoma using the random walk with barriers model[J]. J Magn Reson Imaging, 2024, 59(3): 929-938. DOI: 10.1002/jmri.28831.
[60]
PERUCHO J A U, WANG M D, TSE K Y, et al. Association between MRI histogram features and treatment response in locally advanced cervical cancer treated by chemoradiotherapy[J]. Eur Radiol, 2021, 31(3): 1727-1735. DOI: 10.1007/s00330-020-07217-6.
[61]
BONGERS A, HAU E, SHEN H. Short diffusion time diffusion-weighted imaging with oscillating gradient preparation as an early magnetic resonance imaging biomarker for radiation therapy response monitoring in glioblastoma: a preclinical feasibility study[J]. Int J Radiat Oncol Biol Phys, 2018, 102(4): 1014-1023. DOI: 10.1016/j.ijrobp.2017.12.280.

PREV Progress in the application of habitat imaging in multi-system tumors
NEXT No Records
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn