Share:
Share this content in WeChat
X
Clinical Article
Substantia nigra and locus coeruleus neuromelanin magnetic resonance imaging differentiates Parkinson's disease and multiple system atrophy
LIU Yu  HE Naying  YAN Fuhua 

Cite this article as: LIU Y, HE N Y, YAN F H. Substantia nigra and locus coeruleus neuromelanin magnetic resonance imaging differentiates Parkinson's disease and multiple system atrophy[J]. Chin J Magn Reson Imaging, 2025, 16(4): 6-11. DOI:10.12015/issn.1674-8034.2025.04.002.


[Abstract] Objective To use neuromelanin (NM)-MRI of the substantia nigra (SN) and locus coeruleus (LC) to compare NM loss in patients with Parkinson's disease (PD) and multiple system atrophy (MSA).Materials and Methods A total of 114 subjects (including 38 patients with PD, 38 patients with MSA, and 38 age-matched healthy controls (HCs) were retrospectively collected. In the first part, voxels-of-interests (VOIs) of the bilateral SN were automatically traced based on a brain template detection method. Relative contrast ratio (rCR), volume and corrected volume (SN volume divided by the total intracranial volume) of the SN territory were measured. In the second part, rCR of the LC was measured using manually drawn regions-of-interests (ROIs) within the structure. One-way analysis of variance combined with Bonferroni correction was used to conduct post-hoc multiple comparisons to analyze the intergroup differences of the NM-related parameters. The NM parameters of the SN and LC were combined to generate a model using logistic regression method. Receiver operating characteristic (ROC) curve was used to evaluate the diagnostic performance of different single NM parameters and logistic regression model, and the area under the curve (AUC) was calculated.Results Compared to HCs, volume, corrected volume and rCR of the SN, and rCR of the LC were significantly reduced in PD and MSA patients (Bonferroni correction, all P < 0.001). Of note, MSA had significantly lower SN volume and LC rCR than PD (Bonferroni correction, P < 0.001, respectively). The AUC of the corrected volume of the SN to distinguish MSA and HC, PD and HC reached as high as 0.981 and 0.950, respectively. The AUC of the logistic regression model combining the NM measurement of the SN and LC to distinguish MSA and PD reached 0.817.Conclusions The NM volume and contrast measures of the SN and contrast measures of the LC provided subjective and quantitative information to better facilitate differential diagnosis between PD and MSA.
[Keywords] Parkinson's disease;multiple system atrophy;magnetic resonance imaging;neuromelanin;substantia nigra;locus coeruleus

LIU Yu   HE Naying   YAN Fuhua*  

Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China

Corresponding author: YAN F H, E-mail: yfh11655@rjh.com.cn

Conflicts of interest   None.

Received  2025-01-16
Accepted  2025-03-10
DOI: 10.12015/issn.1674-8034.2025.04.002
Cite this article as: LIU Y, HE N Y, YAN F H. Substantia nigra and locus coeruleus neuromelanin magnetic resonance imaging differentiates Parkinson's disease and multiple system atrophy[J]. Chin J Magn Reson Imaging, 2025, 16(4): 6-11. DOI:10.12015/issn.1674-8034.2025.04.002.

[1]
AZEVEDO C, TEKU G, POMESHCHIK Y, et al. Parkinson's disease and multiple system atrophy patient iPSC-derived oligodendrocytes exhibit alpha-synuclein-induced changes in maturation and immune reactive properties[J/OL]. Proc Natl Acad Sci U S A, 2022, 119: e2111405119 [2025-01-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8944747. DOI: 10.1073/pnas.2111405119.
[2]
POEWE W, STANKOVIC I, HALLIDAY G, et al. Multiple system atrophy[J/OL]. Nat Rev Dis Primers, 2022, 8: 56 [2025-01-16]. https://pubmed.ncbi.nlm.nih.gov/36008429/. DOI: 10.1038/s41572-022-00382-6.
[3]
KRÄMER H H, REBHORN C, GEBER C, et al. Sympathetic and sensory nerve fiber function in multiple system atrophy and idiopathic Parkinson's disease[J]. J Neurol, 2021, 268: 3435-3443. DOI: 10.1007/s00415-021-10514-9.
[4]
OGAWA T, HATANO T, KAMAGATA K, et al. White matter and nigral alterations in multiple system atrophy-parkinsonian type[J/OL]. NPJ Parkinsons Dis, 2021, 7: 96 [2025-01-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556415. DOI: 10.1038/s41531-021-00236-0.
[5]
BERG D, ADLER C H, BLOEM B R, et al. Movement disorder society criteria for clinically established early Parkinson's disease[J]. Mov Disord, 2018, 33: 1643-1646. DOI: 10.1002/mds.27431.
[6]
SUN J, CONG C, LI X, et al. Identification of Parkinson's disease and multiple system atrophy using multimodal PET/MRI radiomics[J]. Eur Radiol, 2024, 34: 662-672. DOI: 10.1007/s00330-023-10003-9.
[7]
HOLLAND N, ROBBINS T W, ROWE J B. The role of noradrenaline in cognition and cognitive disorders[J]. Brain, 2021, 144: 2243-2256. DOI: 10.1093/brain/awab111.
[8]
SONG Y, LEE J H, KIM H K, et al. Longitudinal Trajectory of Dopamine and Serotonin Transporters in Parkinson Disease[J/OL]. J Nucl Med, 2025 [2025-01-16]. https://pubmed.ncbi.nlm.nih.gov/39746754/. DOI: 10.2967/jnumed.124.268365.
[9]
CHOCARRO J, RICO A J, ARIZNABARRETA G, et al. Neuromelanin accumulation drives endogenous synucleinopathy in non-human primates[J]. Brain, 2023, 146: 5000-5014. DOI: 10.1093/brain/awad331.
[10]
SULZER D, CASSIDY C, HORGA G, et al. Neuromelanin detection by magnetic resonance imaging (MRI) and its promise as a biomarker for Parkinson's disease[J/OL]. NPJ Parkinsons Dis, 2018, 4: 11 [2025-01-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893576. DOI: 10.1038/s41531-018-0047-3.
[11]
MARTÍNEZ M, ARIZ M, ALVAREZ I, et al. Brainstem neuromelanin and iron MRI reveals a precise signature for idiopathic and LRRK2 Parkinson's disease[J/OL]. NPJ Parkinsons Dis, 2023, 9: 62 [2025-01-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10105708. DOI: 10.1038/s41531-023-00503-2.
[12]
MARTÍN-BASTIDA A, LAO-KAIM N P, ROUSSAKIS A A, et al. Relationship between neuromelanin and dopamine terminals within the Parkinson's nigrostriatal system[J]. Brain, 2019, 142: 2023-2036. DOI: 10.1093/brain/awz120.
[13]
BETTS M J, KIRILINA E, OTADUY M C G, et al. Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases[J]. Brain, 2019, 142: 2558-2571. DOI: 10.1093/brain/awz193.
[14]
OHTSUKA C, SASAKI M, KONNO K, et al. Differentiation of early-stage parkinsonisms using neuromelanin-sensitive magnetic resonance imaging[J]. Parkinsonism Relat Disord, 2014, 20: 755-760. DOI: 10.1016/j.parkreldis.2014.04.005.
[15]
MATSUURA K, II Y, MAEDA M, et al. Neuromelanin-sensitive magnetic resonance imaging in disease differentiation for parkinsonism or neurodegenerative disease affecting the basal ganglia[J]. Parkinsonism Relat Disord, 2021, 87: 75-81. DOI: 10.1016/j.parkreldis.2021.05.002.
[16]
HE N, CHEN Y, LEWITT P A, et al. Application of Neuromelanin MR Imaging in Parkinson Disease[J]. J Magn Reson Imaging, 2023, 57: 337-352. DOI: 10.1002/jmri.28414.
[17]
TRUJILLO P, AUMANN M A and CLAASSEN D O. Neuromelanin-sensitive MRI as a promising biomarker of catecholamine function[J]. Brain, 2024, 147: 337-351. DOI: 10.1093/brain/awad300.
[18]
CASSIDY C M, ZUCCA F A, GIRGIS R R, et al. Neuromelanin-sensitive MRI as a noninvasive proxy measure of dopamine function in the human brain[J]. Proc Natl Acad Sci U S A, 2019, 116: 5108-5117. DOI: 10.1073/pnas.1807983116.
[19]
PRASUHN J, PRASUHN M, FELLBRICH A, et al. Association of Locus Coeruleus and Substantia Nigra Pathology With Cognitive and Motor Functions in Patients With Parkinson Disease[J/OL]. Neurology, 2021, 97: e1007-e1016 [2025-01-16]. https://pubmed.ncbi.nlm.nih.gov/34187859/. DOI: 10.1212/wnl.0000000000012444.
[20]
CHOUGAR L, ARSOVIC E, GAURAV R, et al. Regional Selectivity of Neuromelanin Changes in the Substantia Nigra in Atypical Parkinsonism[J]. Mov Disord, 2022, 37: 1245-1255. DOI: 10.1002/mds.28988.
[21]
WENNING G K, STANKOVIC I, VIGNATELLI L, et al. The Movement Disorder Society Criteria for the Diagnosis of Multiple System Atrophy[J]. Mov Disord, 2022, 37: 1131-1148. DOI: 10.1002/mds.29005.
[22]
JIN Z, WANG Y, JOKAR M, et al. Automatic detection of neuromelanin and iron in the midbrain nuclei using a magnetic resonance imaging-based brain template[J]. Hum Brain Mapp, 2022, 43: 2011-2025. DOI: 10.1002/hbm.25770.
[23]
MATSUURA K, MAEDA M, YATA K, et al. Neuromelanin magnetic resonance imaging in Parkinson's disease and multiple system atrophy[J]. Eur Neurol, 2013, 70: 70-77. DOI: 10.1159/000350291.
[24]
NOBILEAU A, GAURAV R, CHOUGAR L, et al. Neuromelanin-Sensitive Magnetic Resonance Imaging Changes in the Locus Coeruleus/Subcoeruleus Complex in Patients with Typical and Atypical Parkinsonism[J]. Mov Disord, 2023, 38: 479-484. DOI: 10.1002/mds.29309.
[25]
HE N, GHASSABAN K, HUANG P, et al. Imaging iron and neuromelanin simultaneously using a single 3D gradient echo magnetization transfer sequence: Combining neuromelanin, iron and the nigrosome-1 sign as complementary imaging biomarkers in early stage Parkinson's disease[J/OL]. Neuroimage, 2021, 230: 117810 [2025-01-16]. https://pubmed.ncbi.nlm.nih.gov/33524572/. DOI: 10.1016/j.neuroimage.2021.117810.
[26]
WANG J, HILL-JARRETT T, BUTO P, et al. Comparison of approaches to control for intracranial volume in research on the association of brain volumes with cognitive outcomes[J/OL]. Hum Brain Mapp, 2024, 45: e26633 [2025-01-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10910271. DOI: 10.1002/hbm.26633.
[27]
JUCAITE A, CSELÉNYI Z, KREISL W C, et al. Glia Imaging Differentiates Multiple System Atrophy from Parkinson's Disease: A Positron Emission Tomography Study with [(11) C]PBR28 and Machine Learning Analysis[J]. Mov Disord, 2022, 37: 119-129. DOI: 10.1002/mds.28814.
[28]
CAPUCCIATI A, ZUCCA F A, MONZANI E, et al. Interaction of Neuromelanin with Xenobiotics and Consequences for Neurodegeneration; Promising Experimental Models[J/OL]. Antioxidants (Basel), 2021, 10 [2025-01-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8224073. DOI: 10.3390/antiox10060824.
[29]
LEWIS S J, PAVESE N, RIVERO-BOSCH M, et al. Brain monoamine systems in multiple system atrophy: a positron emission tomography study[J]. Neurobiol Dis, 2012, 46: 130-136. DOI: 10.1016/j.nbd.2011.12.053.
[30]
SOMMERAUER M, FEDOROVA T D, HANSEN A K, et al. Evaluation of the noradrenergic system in Parkinson's disease: an 11C-MeNER PET and neuromelanin MRI study[J]. Brain, 2018, 141: 496-504. DOI: 10.1093/brain/awx348.

PREV The interpretation of 2023 ESC guidelines for the management of cardiomyopathies: classification innovation of non-dilated left ventricular cardiomyopathy
NEXT Analysis of characteristics of brain functional network in Crohn,s disease patients with chronic abdominal pain based on rs-fMRI graph theory
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn