Share:
Share this content in WeChat
X
Clinical Article
Assessing the efficacy of MRI radiomics for KRAS mutation prediction in colorectal cancer: insights from a systematic review and Meta-analysis
MA Xiaomei  HE Jianwei  JIA Yingmei  WANG Lili 

Cite this article as: MA X M, HE J W, JIA Y M, et al. Assessing the efficacy of MRI radiomics for KRAS mutation prediction in colorectal cancer: insights from a systematic review and Meta-analysis[J]. Chin J Magn Reson Imaging, 2025, 16(4): 60-69. DOI:10.12015/issn.1674-8034.2025.04.010.


[Abstract] Objective To assess the research quality of utilizing MRI radiomics for non-invasive prediction of Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in colorectal cancer and evaluate the diagnostic accuracy of associated prediction models.Materials and Methods A comprehensive literature search was conducted utilizing databases including PubMed, Embase, The Cochrane Library, Web of Science, Scopus, CNKI, and WanFang Data. This search aimed to identify all relevant studies that satisfied the established inclusion and exclusion criteria regarding the use of MRI for predicting KRAS gene mutations in colorectal cancer, covering the period from January 2015 to October 2024. The methodological quality of the selected studies was evaluated using the quality assessment of diagnostic accuracy studies 2 (QUADAS-2) and radiomics quality score (RQS) tools. Furthermore, heterogeneity among the included studies was assessed, and pooled weighted sensitivity, specificity, and diagnostic odds ratio (DOR) were calculated using Stata 18 software, along with a summary receiver operating characteristic (SROC) analysis.Results A total of 17 studies, encompassing 2684 cases, were included in the analysis. The sensitivity, specificity area under the curve (AUC) values of preoperative prediction of KRAS gene status in rectal cancer utilizing MRI radiomics were 79% [95% confidence interval (CI): 75% to 83%], 74% (95% CI: 68% to 80%), and 0.85 (95% CI: 0.81 to 0.88), respectively. Both sensitivity and specificity combined results showed moderate heterogeneity, with I² heterogeneity statistics values of 56.80% (95% CI: 34.08% to 79.53%) and 77.35% (95% CI: 67.22% to 87.48%), respectively; Q values were 39.35 (P < 0.001) and 75.05 (P < 0.001), respectively. The results of subgroup analysis and univariate Meta-analysis indicated that all variables had a certain impact on heterogeneity (P < 0.05). Deek's funnel plot was basically symmetrical, and the slope coefficient was not statistically significant (P = 0.11), suggesting that there was no significant publication bias in the studies included in our analysis.Conclusions MRI radiomics shows strong potential for non-invasive KRAS status prediction in rectal cancer, though study heterogeneity exists. Future research should focus on improving research quality and validating models with multicenter datasets to boost accuracy and reliability.
[Keywords] colorectal cancer;Kirsten rat sarcoma viral oncogene homolog;magnetic resonance imaging;radiomics;Meta-analysis

MA Xiaomei   HE Jianwei   JIA Yingmei   WANG Lili*  

Department of Radiology, Gansu Provincial Hospital, Lanzhou 730013, China

Corresponding author: WANG L L, E-mail: wanglilihq@163.com

Conflicts of interest   None.

Received  2024-12-23
Accepted  2025-04-10
DOI: 10.12015/issn.1674-8034.2025.04.010
Cite this article as: MA X M, HE J W, JIA Y M, et al. Assessing the efficacy of MRI radiomics for KRAS mutation prediction in colorectal cancer: insights from a systematic review and Meta-analysis[J]. Chin J Magn Reson Imaging, 2025, 16(4): 60-69. DOI:10.12015/issn.1674-8034.2025.04.010.

[1]
PINHEIRO M, MOREIRA D N, GHIDINI M. Colon and rectal cancer: an emergent public health problem[J]. World J Gastroenterol, 2024, 30(7): 644-651. DOI: 10.3748/wjg.v30.i7.644.
[2]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[3]
ZHANG J Z, YANG M, WANG X S. Epidemiology and disease burden of colorectal cancer in China, the United States, and Worldwide: a comparative analysis and reflection[J/OL]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2024, 13(2): 89-93 [2024-12-22]. https://zhjzcjbdzzz.cma-cmc.com.cn/CN/10.3877/cma.j.issn.2095-3224.2024.02.001. DOI: 10.3877/cma.j.issn.2095-3224.2024.02.00.
[4]
WANG X S, GU Y H, JIANG Z, et al. Chinese expert consensus on targeted therapy for colorectal cancer[J/OL]. Chinese Archives of General Surgery(Electronic Edition), 2023, 17(1): 1-8 [2024-12-22]. https://zhptwkxwx.cma-cmc.com.cn/CN/10.3877/cma.j.issn.1674-0793.2023.01.001. DOI: 10.3877/cma.j.issn.1674-0793.2023.01.001.
[5]
ZHANG S H, LI Z N, WANG W, et al. Research progress in the related treatment of KRAS mutant colorectal cancer[J]. China Oncol, 2024, 34(10): 979-986. DOI: 10.19401/j.cnki.1007-3639.2024.10.008.
[6]
KAWAGUCHI Y, KOPETZ S, NEWHOOK T E, et al. Mutation status of RAS, TP53, and SMAD4 is superior to mutation status of RAS alone for predicting prognosis after resection of colorectal liver metastases[J]. Clin Cancer Res, 2019, 25(19): 5843-5851. DOI: 10.1158/1078-0432.CCR-19-0863.
[7]
SUNDSTRÖM M, EDLUND K, LINDELL M, et al. KRAS analysis in colorectal carcinoma: analytical aspects of Pyrosequencing and allele-specific PCR in clinical practice[J/OL]. BMC Cancer, 2010, 10: 660 [2024-12-22]. https://pmc.ncbi.nlm.nih.gov/articles/PMC3002357/. DOI: 10.1186/1471-2407-10-660.
[8]
KALLIGOSFYRI P M, NIKOU S, KARTERI S, et al. Rapid multiplex strip test for the detection of circulating tumor DNA mutations for liquid biopsy applications[J/OL]. Biosensors, 2022, 12(2): 97 [2024-12-22]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8869478/. DOI: 10.3390/bios12020097.
[9]
HORVAT N, ROCHA C C T, OLIVEIRA B C, et al. MRI of rectal cancer: tumor staging, imaging techniques, and management[J]. Radiographics, 2019, 39(2): 367-387. DOI: 10.1148/rg.2019180114.
[10]
FERNANDES M C, GOLLUB M J, BROWN G. The importance of MRI for rectal cancer evaluation[J/OL]. Surg Oncol, 2022, 43: 101739 [2024-12-22]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9464708/. DOI: 10.1016/j.suronc.2022.101739.
[11]
XIANG Y R, LI S, SONG M, et al. KRAS status predicted by pretreatment MRI radiomics was associated with lung metastasis in locally advanced rectal cancer patients[J/OL]. BMC Med Imaging, 2023, 23(1): 210 [2024-12-22]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10717608/. DOI: 10.1186/s12880-023-01173-5.
[12]
LIU H H, YIN H K, LI J N, et al. A deep learning model based on MRI and clinical factors facilitates noninvasive evaluation of KRAS mutation in rectal cancer[J]. J Magn Reson Imaging, 2022, 56(6): 1659-1668. DOI: 10.1002/jmri.28237.
[13]
JO S J, KIM S H. Association between oncogenic RAS mutation and radiologic-pathologic findings in patients with primary rectal cancer[J]. Quant Imaging Med Surg, 2019, 9(2): 238-246. DOI: 10.21037/qims.2018.12.10.
[14]
JIANG X Q, YAN C C, ZHOU Z Y. Study on the correlation between MRI features and KRAS status of rectal cancers before operation[J]. Chin J Magn Reson Imag, 2020, 11(11): 1004-1009. DOI: 10.12015/issn.1674-8034.2020.11.010.
[15]
LI D D, CUI Y F, YANG X T. Radiomic signature based on MR T2-weighted images for predicting KRAS mutation statue in rectal cancer[J]. Chin J Anat Clin, 2021, 26(1): 7-14. DOI: 10.3760/cma.j.cn101202-20200407-00116.
[16]
TANG X, PENG Y J, CHEN Y X, et al. Multiparametric MRI radiomics signature for prediction of KRAS gene mutation in rectal cancer[J]. Chin J Magn Reson Imag, 2021, 12(11): 31-36. DOI: 10.12015/issn.1674-8034.2021.11.007.
[17]
ZHANG G W, CHEN L, LIU A E, et al. Comparable performance of deep learning-based to manual-based tumor segmentation in KRAS/NRAS/BRAF mutation prediction with MR-based radiomics in rectal cancer[J/OL]. Front Oncol, 2021, 11: 696706 [2024-12-22]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8358773/. DOI: 10.3389/fonc.2021.696706.
[18]
XU Y Y, XU Q Y, SUN H L, et al. Could IVIM and ADC help in predicting the KRAS status in patients with rectal cancer?[J]. Eur Radiol, 2018, 28(7): 3059-3065. DOI: 10.1007/s00330-018-5329-y.
[19]
WHITING P F, RUTJES A W S, WESTWOOD M E, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies[J]. Ann Intern Med, 2011, 155(8): 529-536. DOI: 10.7326/0003-4819-155-8-201110180-00009.
[20]
LAMBIN P, LEIJENAAR R T H, DEIST T M, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-762. DOI: 10.1038/nrclinonc.2017.141.
[21]
CUI Y F, LIU H H, REN J L, et al. Development and validation of a MRI-based radiomics signature for prediction of KRAS mutation in rectal cancer[J]. Eur Radiol, 2020, 30(4): 1948-1958. DOI: 10.1007/s00330-019-06572-3.
[22]
ZHOU M, HUANG H Y, BAO D Y, et al. Assessment of prognostic indicators and KRAS mutations in rectal cancer using a fractional-order Calculus MR diffusion model: whole tumor histogram analysis[J]. Abdom Radiol, 2025, 50(2): 569-578. DOI: 10.1007/s00261-024-04523-1.
[23]
CUI Y F, CUI X E, YANG X T, et al. Diffusion kurtosis imaging-derived histogram metrics for prediction of KRAS mutation in rectal adenocarcinoma: Preliminary findings[J]. J Magn Reson Imaging, 2019, 50(3): 930-939. DOI: 10.1002/jmri.26653.
[24]
YEO D M, OH S N, CHOI M H, et al. Histogram analysis of perfusion parameters from dynamic contrast-enhanced MR imaging with tumor characteristics and therapeutic response in locally advanced rectal cancer[J/OL]. Biomed Res Int, 2018, 2018: 3724393 [2024-12-22]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6110013/. DOI: 10.1155/2018/3724393.
[25]
GUO X F, YANG W Q, YANG Q, et al. Feasibility of MRI radiomics for predicting KRAS mutation in rectal cancer[J]. Curr Med Sci, 2020, 40(6): 1156-1160. DOI: 10.1007/s11596-020-2298-6.
[26]
OH J E, KIM M J, LEE J, et al. Magnetic resonance-based texture analysis differentiating KRAS mutation status in rectal cancer[J]. Cancer Res Treat, 2020, 52(1): 51-59. DOI: 10.4143/crt.2019.050.
[27]
XU Y Y, XU Q Y, MA Y H, et al. Characterizing MRI features of rectal cancers with different KRAS status[J/OL]. BMC Cancer, 2019, 19(1): 1111 [2024-12-22]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6857233/. DOI: 10.1186/s12885-019-6341-6.
[28]
MENG X C, XIA W, XIE P Y, et al. Preoperative radiomic signature based on multiparametric magnetic resonance imaging for noninvasive evaluation of biological characteristics in rectal cancer[J]. Eur Radiol, 2019, 29(6): 3200-3209. DOI: 10.1007/s00330-018-5763-x.
[29]
ZHANG Z Y, SHEN L J, WANG Y, et al. MRI radiomics signature as a potential biomarker for predicting KRAS status in locally advanced rectal cancer patients[J/OL]. Front Oncol, 2021, 11: 614052 [2024-12-22]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8138318/. DOI: 10.3389/fonc.2021.614052.
[30]
MA Y L, WANG J W, SONG K, et al. Spatial-Frequency dual-branch attention model for determining KRAS mutation status in colorectal cancer with T2-weighted MRI[J/OL]. Comput Methods Programs Biomed, 2021, 209: 106311 [2024-12-22]. https://www.sciencedirect.com/science/article/abs/pii/S0169260721003850?via%3Dihub. DOI: 10.1016/j.cmpb.2021.106311.
[31]
CHEN B M. Non-invasive prediction of KRAS mutation in rectal cancer based on MRI T2 imaging model of tumor focus and peritumoral mesangial region[D]. Guangzhou: Southern Medical University, 2023. DOI: 10.27003/d.cnki.gojyu.2023.000606.
[32]
FAN R N, LI H, LIN L B, et al. MRI radiomics for predicting KRASgene mutation in colorectal cancer patients[J]. Chin J Med Imag Technol, 2022, 38(3): 392-397. DOI: 10.13929/j.issn.1003-3289.2022.03.017.
[33]
SUN D Q, WANG L H, LI G Z, et al. To predict KRAS mutation in rectal cancer patients with texture analysis and functional MRI[J]. J Clin Radiol, 2021, 40(5): 924-929. DOI: 10.13437/j.cnki.jcr.2021.05.020.
[34]
PENG L P, ZHANG X L, SHI L Y, et al. Research progress of CT and MRI with radiomics to predict microsatellite instability in colorectal cancer[J]. Chin J Magn Reson Imag, 2024, 15(6): 218-223 DOI: 10.12015/issn.1674-8034.2024.06.035.
[35]
WANG M, MEI T, GONG Y L. The quality and clinical translation of radiomics studies based on MRI for predicting Ki-67 levels in patients with breast cancer[J/OL]. Br J Radiol, 2023, 96(1150): 20230172 [2024-12-22]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10546437/. DOI: 10.1259/bjr.20230172.
[36]
URSPRUNG S, BEER L, BRUINING A, et al. Radiomics of computed tomography and magnetic resonance imaging in renal cell carcinoma-a systematic review and meta-analysis[J]. Eur Radiol, 2020, 30(6): 3558-3566. DOI: 10.1007/s00330-020-06666-3.
[37]
MÜHLBAUER J, EGEN L, KOWALEWSKI K F, et al. Radiomics in renal cell carcinoma-a systematic review and meta-analysis[J/OL]. Cancers, 2021, 13(6): 1348 [2024-12-22]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8002585/. DOI: 10.3390/cancers13061348.
[38]
BLEKER J, KWEE T C, YAKAR D. Quality of multicenter studies using MRI radiomics for diagnosing clinically significant prostate cancer: a systematic review[J/OL]. Life, 2022, 12(7): 946 [2024-12-22]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9324573/. DOI: 10.3390/life12070946.
[39]
WANG Q, XU J H, WANG A R, et al. Systematic review of machine learning-based radiomics approach for predicting microsatellite instability status in colorectal cancer[J]. Radiol Med, 2023, 128(2): 136-148. DOI: 10.1007/s11547-023-01593-x.
[40]
JO S J, KIM S H, PARK S J, et al. Association between texture analysis parameters and molecular biologic KRAS mutation in non-mucinous rectal cancer[J]. Taehan Yongsang Uihakhoe Chi, 2021, 82(2): 406-416. DOI: 10.3348/jksr.2020.0065.
[41]
BODALAL Z, TREBESCHI S, NGUYEN-KIM T D L, et al. Radiogenomics: bridging imaging and genomics[J]. Abdom Radiol, 2019, 44(6): 1960-1984. DOI: 10.1007/s00261-019-02028-w.
[42]
LI Z H, HUANG H Z, ZHAO Z H, et al. Development and validation of a nomogram based on DCE-MRI radiomics for predicting hypoxia-inducible factor 1α expression in locally advanced rectal cancer[J]. Acad Radiol, 2024, 31(12): 4923-4933. DOI: 10.1016/j.acra.2024.05.015.
[43]
CHEN Y, DING L, ZHANG Z W, et al. Role of dynamic contrast-enhanced MRI in predicting severe acute radiation-induced rectal injury in patients with rectal cancer[J]. Eur Radiol, 2024, 34(3): 1471-1480. DOI: 10.1007/s00330-023-10194-1.
[44]
HUANG J C, TIAN W W, ZHANG L L, et al. Preoperative prediction power of imaging methods for microvascular invasion in hepatocellular carcinoma: a systemic review and meta-analysis[J/OL]. Front Oncol, 2020, 10: 887 [2024-12-22]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7333535/. DOI: 10.3389/fonc.2020.00887.

PREV Preliminary study on deep learning-based enhanced 3D-MRA segmentation in patients with Budd-Chiari syndrome
NEXT A study on the histogram of DCE-MRI pharmacokinetic parameters for predicting endocrine therapy response in prostate cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn