Share:
Share this content in WeChat
X
Clinical Article
Predictive value of ADCmean combined with PSAD in clinically significant prostate cancer with PI-RADS score ≥ 3
BEI Mingjie  XU Jingfang  ZHU Xin 

Cite this article as: BEI M J, XU J F, ZHU X. Predictive value of ADCmean combined with PSAD in clinically significant prostate cancer with PI-RADS score ≥ 3[J]. Chin J Magn Reson Imaging, 2025, 16(4): 81-86, 107 DOI:10.12015/issn.1674-8034.2025.04.012.


[Abstract] Objective To investigate the predictive value of mean apparent diffusion coefficient (ADCmean) combined with prostate specific antigen density (PSAD) for clinically significant prostate cancer (csPCa) with a prostate imaging reporting and data system version (PI-RADS) score ≥ 3.Materials and Methods Clinical data and imaging data of patients with PI-RADS score ≥ 3 on prostate MRI performed at our hospital between February 2022 and August 2024 and with pathologic histology were retrospectively analyzed. The highest PI-RADS score and the largest dimension of the largest lesion were selected for ROI outlining, and the ADCmean and apparent diffusion coefficient min (ADCmin) of the lesion were measured. Univariate and multivariate logistic regression analyses were performed to identify the best clinical and imaging predictors of csPCa. Receiver operating characteristics (ROC) curves and the DeLong test were used to compare the diagnostic efficacy of the best clinical and imaging predictive models and their combined models by calculating the area under the curve (AUC), sensitivity and specificity.Results A total of 75 (48.39%) csPCa patients and 80 (51.61%) non-csPCa patients were included in this study. age, total prostate specific antigen (tPSA), free prostate specific antigen (fPSA), and PSAD were greater in the csPCa group than in the non-csPCa group, and prostate volume (PV), fPSA and tPSA ratio (f/t), ADCmin, and ADCmean were smaller in the csPCa group than in the non-csPCa group, and the differences were statistically significant (P < 0.05). Stepwise logistic regression analysis and comparison of ROC curves yielded the best clinical indicator PSAD and imaging indicator ADCmean for predicting csPCa, with an AUC of 0.846 for PSAD and 0.898 for ADCmean, and an optimal cutoff value of 0.307 ng/mL2 for PSAD, with a sensitivity of 66.67% and a specificity of 91.25%; ADCmean had an optimal cutoff value of 773.5 mm2/s, a sensitivity of 86.67%, and a specificity of 85.00%; the AUC of the two combined models was as high as 0.925, and the difference in diagnostic efficacy between the combined model and the single model was statistically significant using DeLong's test (P < 0.05). The sensitivity and specificity of the combined model for predicting csPCa were 86.67% and 88.75%.Conclusions The predictive efficacy of ADCmean for csPCa with PI-RADS ≥ 3 points was better than that of ADCmin, and the combined model with PSAD can further improve the predictive value of csPCa with PI-RADS ≥ 3 points, which is instructive for clinical diagnosis and treatment.
[Keywords] clinically significant prostate cancer;prostate-specific antigen density;magnetic resonance imaging;prostate imaging reporting and data system;apparent diffusion coefficient

BEI Mingjie   XU Jingfang   ZHU Xin*  

Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China

Corresponding author: ZHU X, E-mail: 66zhuxin@163.com

Conflicts of interest   None.

Received  2025-01-06
Accepted  2025-04-02
DOI: 10.12015/issn.1674-8034.2025.04.012
Cite this article as: BEI M J, XU J F, ZHU X. Predictive value of ADCmean combined with PSAD in clinically significant prostate cancer with PI-RADS score ≥ 3[J]. Chin J Magn Reson Imaging, 2025, 16(4): 81-86, 107 DOI:10.12015/issn.1674-8034.2025.04.012.

[1]
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2021[J]. CA A Cancer J Clinicians, 2021, 71(1): 7-33. DOI: 10.3322/caac.21654.
[2]
MATOSO A, EPSTEIN J I. Defining clinically significant prostate cancer on the basis of pathological findings[J]. Histopathology, 2019, 74(1): 135-145. DOI: 10.1111/his.13712.
[3]
ADAMAKI M, ZOUMPOURLIS V. Prostate Cancer Biomarkers: From diagnosis to prognosis and precision-guided therapeutics[J/OL]. Pharmacol Ther, 2021, 228: 107932 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/34174272/. DOI: 10.1016/j.pharmthera.2021.107932.
[4]
WILLIAMS I S, MCVEY A, PERERA S, et al. Modern paradigms for prostate cancer detection and management[J]. Med J Aust, 2022, 217(8): 424-433. DOI: 10.5694/mja2.51722.
[5]
FAZEKAS T, SHIM S R, BASILE G, et al. Magnetic resonance imaging in prostate cancer screening: a systematic review and meta-analysis[J]. JAMA Oncol, 2024, 10(6): 745-754. DOI: 10.1001/jamaoncol.2024.0734.
[6]
PADHANI A R, GODTMAN R A, SCHOOTS I G. Key learning on the promise and limitations of MRI in prostate cancer screening[J]. Eur Radiol, 2024, 34(9): 6168-6174. DOI: 10.1007/s00330-024-10626-6.
[7]
TURKBEY B, ROSENKRANTZ A B, HAIDER M A, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2[J]. Eur Urol, 2019, 76(3): 340-351. DOI: 10.1016/j.eururo.2019.02.033.
[8]
CASH H, MAXEINER A, STEPHAN C, et al. The detection of significant prostate cancer is correlated with the Prostate Imaging Reporting and Data System (PI-RADS) in MRI/transrectal ultrasound fusion biopsy[J]. World J Urol, 2016, 34(4): 525-532. DOI: 10.1007/s00345-015-1671-8.
[9]
THAI J N, NARAYANAN H A, GEORGE A K, et al. Validation of PI-RADS version 2 in transition zone lesions for the detection of prostate cancer[J]. Radiology, 2018, 288(2): 485-491. DOI: 10.1148/radiol.2018170425.
[10]
TAMADA T, UEDA Y, UENO Y, et al. Diffusion-weighted imaging in prostate cancer[J]. MAGMA, 2022, 35(4): 533-547. DOI: 10.1007/s10334-021-00957-6.
[11]
VAN DER HOOGT K J J, SCHIPPER R J, WESSELS R, et al. Breast DWI analyzed before and after gadolinium contrast administration-an intrapatient analysis on 1.5 T and 3.0 T[J]. Invest Radiol, 2023, 58(12): 832-841. DOI: 10.1097/RLI.0000000000000999.
[12]
LAWRENCE E M, ZHANG Y X, STAREKOVA J, et al. Reduced field-of-view and multi-shot DWI acquisition techniques: Prospective evaluation of image quality and distortion reduction in prostate cancer imaging[J]. Magn Reson Imaging, 2022, 93: 108-114. DOI: 10.1016/j.mri.2022.08.008.
[13]
WANG F M, FU M, TANG Y Z, et al. The value of adjusted PSAD in prostate cancer detection in the Chinese population[J/OL]. Front Oncol, 2024, 14: 1462997 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/39416462/. DOI: 10.3389/fonc.2024.1462997.
[14]
WANG C M, YUAN L, SHEN D Y, et al. Combination of PI-RADS score and PSAD can improve the diagnostic accuracy of prostate cancer and reduce unnecessary prostate biopsies[J/OL]. Front Oncol, 2022, 12: 1024204 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/36465344/. DOI: 10.3389/fonc.2022.1024204.
[15]
ZOU B Z, WEN H, LUO H J, et al. Value of serum free prostate-specific antigen density in the diagnosis of prostate cancer[J]. Ir J Med Sci, 2023, 192(6): 2681-2687. DOI: 10.1007/s11845-023-03448-w.
[16]
LIN J K, ZHONG Z P, CHEN Z Y, et al. Evaluation of the diagnostic performance of PI-RADS v2.1 combined with ADC value in prostate transitional zone cancer[J]. Chin Comput Med Imag, 2022, 28(5): 510-516. DOI: 10.19627/j.cnki.cn31-1700/th.2022.05.016.
[17]
AGROTIS G, POOCH E, ABDELATTY M, et al. Diagnostic performance of ADC and ADCratio in MRI-based prostate cancer assessment: A systematic review and meta-analysis[J]. Eur Radiol, 2025, 35(1): 404-416. DOI: 10.1007/s00330-024-10890-6.
[18]
AHMED H U, BOSAILY A E, BROWN L C, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study[J]. Lancet, 2017, 389(10071): 815-822. DOI: 10.1016/S0140-6736(16)32401-1.
[19]
BOEHM B E, YORK M E, PETROVICS G, et al. Biomarkers of aggressive prostate cancer at diagnosis[J/OL]. Int J Mol Sci, 2023, 24(3): 2185 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/36768533/. DOI: 10.3390/ijms24032185.
[20]
WANG X F, HIELSCHER T, RADTKE J P, et al. Comparison of single-scanner single-protocol quantitative ADC measurements to ADC ratios to detect clinically significant prostate cancer[J/OL]. Eur J Radiol, 2021, 136: 109538 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/33482592/. DOI: 10.1016/j.ejrad.2021.109538.
[21]
KASIVISVANATHAN V, RANNIKKO A S, BORGHI M, et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis[J]. N Engl J Med, 2018, 378(19): 1767-1777. DOI: 10.1056/NEJMoa1801993.
[22]
TAMADA T, KIDO A, YAMAMOTO A, et al. Comparison of biparametric and multiparametric MRI for clinically significant prostate cancer detection with PI-RADS version 2.1[J]. J Magn Reson Imaging, 2021, 53(1): 283-291. DOI: 10.1002/jmri.27283.
[23]
LEI Y, LI T J, GU P, et al. Combining prostate-specific antigen density with prostate imaging reporting and data system score version 2.1 to improve detection of clinically significant prostate cancer: A retrospective study[J/OL]. Front Oncol, 2022, 12: 992032 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/36212411/. DOI: 10.3389/fonc.2022.992032.
[24]
OERTHER B, ENGEL H, BAMBERG F, et al. Cancer detection rates of the PI-RADSv2.1 assessment categories: systematic review and meta-analysis on lesion level and patient level[J]. Prostate Cancer Prostatic Dis, 2022, 25(2): 256-263. DOI: 10.1038/s41391-021-00417-1.
[25]
YANG S, ZHAO W L, TAN S X, et al. Combining clinical and MRI data to manage PI-RADS 3 lesions and reduce excessive biopsy[J]. Transl Androl Urol, 2020, 9(3): 1252-1261. DOI: 10.21037/tau-19-755.
[26]
SCHRÖDER F H, HUGOSSON J, ROOBOL M J, et al. Screening and prostate cancer mortality: results of the European randomised study of screening for prostate cancer (ERSPC) at 13 years of follow-up[J]. Lancet, 2014, 384(9959): 2027-2035. DOI: 10.1016/S0140-6736(14)60525-0.
[27]
TAN T W, PNG K S, LEE C H, et al. MRI fusion-targeted transrectal prostate biopsy and the role of prostate-specific antigen density and prostate health index for the detection of clinically significant prostate cancer in Southeast Asian men[J]. J Endourol, 2017, 31(11): 1111-1116. DOI: 10.1089/end.2017.0485.
[28]
GÖRTZ M, RADTKE J P, HATIBOGLU G, et al. The value of prostate-specific antigen density for prostate imaging-reporting and data system 3 lesions on multiparametric magnetic resonance imaging: a strategy to avoid unnecessary prostate biopsies[J]. Eur Urol Focus, 2021, 7(2): 325-331. DOI: 10.1016/j.euf.2019.11.012.
[29]
HAN C, LIU S, QIN X B, et al. MRI combined with PSA density in detecting clinically significant prostate cancer in patients with PSA serum levels of 4∼10ng/mL: Biparametric versus multiparametric MRI[J]. Diagn Interv Imaging, 2020, 101(4): 235-244. DOI: 10.1016/j.diii.2020.01.014.
[30]
ULLRICH T, QUENTIN M, ARSOV C, et al. Risk stratification of equivocal lesions on multiparametric magnetic resonance imaging of the prostate[J]. J Urol, 2018, 199(3): 691-698. DOI: 10.1016/j.juro.2017.09.074.
[31]
ZHAO Y Y, ZHANG D, SONG N, et al. Diagnostic value of ultra-high b-value DWI in peripheral prostate cancer[J]. Chin J Magn Reson Imag, 2021, 12(12): 24-28. DOI: 10.12015/issn.1674-8034.2021.12.005.
[32]
FANG J Z, ZHANG Y Z, LI R F, et al. The utility of diffusion-weighted imaging for differentiation of Phyllodes tumor from fibroadenoma and breast cancer[J/OL]. Front Oncol, 2023, 13: 938189 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/36937381/. DOI: 10.3389/fonc.2023.938189.
[33]
GAO J, XU S, JU H J, et al. The potential application of MR-derived ADCmin values from 68Ga-DOTATATE and 18F-FDG dual tracer PET/MR as replacements for FDG PET in assessment of grade and stage of pancreatic neuroendocrine tumors[J/OL]. EJNMMI Res, 2023, 13(1): 10 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/36752942/. DOI: 10.1186/s13550-023-00960-z.
[34]
LEE S, KIM S H, HWANG J A, et al. Pre-operative ADC predicts early recurrence of HCC after curative resection[J]. Eur Radiol, 2019, 29(2): 1003-1012. DOI: 10.1007/s00330-018-5642-5.
[35]
KRAUSS W, FREY J, LAGERLÖF J H, et al. Radiomics from multisite MRI and clinical data to predict clinically significant prostate cancer[J]. Acta Radiol, 2024, 65(3): 307-317. DOI: 10.1177/02841851231216555.
[36]
ZHAO Y Y, XIONG M L, LIU Y F, et al. Magnetic resonance imaging radiomics-based prediction of clinically significant prostate cancer in equivocal PI-RADS 3 lesions in the transitional zone[J/OL]. Front Oncol, 2023, 13: 1247682 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/38074651/. DOI: 10.3389/fonc.2023.1247682.
[37]
ABREU-GOMEZ J, WALKER D, ALOTAIBI T, et al. Effect of observation size and apparent diffusion coefficient (ADC) value in PI-RADS v2.1 assessment category 4 and 5 observations compared to adverse pathological outcomes[J]. Eur Radiol, 2020, 30(8): 4251-4261. DOI: 10.1007/s00330-020-06725-9.
[38]
DONG Q F, CHEN Y H, WANG C M, et al. Application value of apparent diffusion coefficient in patients with PI-RADS score of 3 and PSA gray area[J]. J Clin Urol, 2024, 39(10): 909-913, 917. DOI: 10.13201/j.issn.1001-1420.2024.10.013.
[39]
MEYER H J, WIENKE A, SUROV A. Discrimination between clinical significant and insignificant prostate cancer with apparent diffusion coefficient-a systematic review and meta analysis[J/OL]. BMC Cancer, 2020, 20(1): 482 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/32460795/. DOI: 10.1186/s12885-020-06942-x.
[40]
KESCH C, RADTKE J P, WINTSCHE A, et al. Correlation between genomic index lesions and mpMRI and 68Ga-PSMA-PET/CT imaging features in primary prostate cancer[J/OL]. Sci Rep, 2018, 8(1): 16708 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/30420756/. DOI: 10.1038/s41598-018-35058-3.
[41]
FANG L, FANG H, JIN L, et al. The value of apparent diffusion coefficient minimum in differential diagnosis of early prostate cancer and chronic prostatitis in peripheral zone[J]. Chin J Magn Reson Imag, 2023, 14(7): 93-97. DOI: 10.12015/issn.1674-8034.2023.07.016.
[42]
YI N, WANG Y J, WANG P, et al. Application of MRI apparent diffusion coefficient in identifying prognostic risk stratification of prostate cancer[J]. Chin J Magn Reson Imag, 2022, 13(12): 104-110. DOI: 10.12015/issn.1674-8034.2022.12.018.
[43]
YAN X, MA K, ZHU L, et al. The value of apparent diffusion coefficient values in predicting Gleason grading of low to intermediate-risk prostate cancer[J/OL]. Insights Imaging, 2024, 15(1): 137 [2025-01-04]. https://pubmed.ncbi.nlm.nih.gov/38853212/. DOI: 10.1186/s13244-024-01684-x

PREV A study on the histogram of DCE-MRI pharmacokinetic parameters for predicting endocrine therapy response in prostate cancer
NEXT Application of nomogram model based on ADC histogram features in predicting clinically significant prostate cancer in transitional zone
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn