Share:
Share this content in WeChat
X
Clinical Article
Application of nomogram model based on ADC histogram features in predicting clinically significant prostate cancer in transitional zone
ZHANG Shuanglin  CHEN Fangming  GAO Xi 

Cite this article as: ZHANG S L, CHEN F M, GAO X. Application of nomogram model based on ADC histogram features in predicting clinically significant prostate cancer in transitional zone[J]. Chin J Magn Reson Imaging, 2025, 16(4): 87-92. DOI:10.12015/issn.1674-8034.2025.04.013.


[Abstract] Objective To develop a nomogram model using apparent diffusion coefficient (ADC) histogram features to predict clinically significant prostate cancer (CSPCa) in the transition zone.Materials and Methods A retrospective analysis was conducted on 283 patients with suspicious prostate cancer admitted to the urology department of our hospital from January 2019 to June 2024. The patients were randomly divided into a development set (70%, 198 cases) and an internal validation set (30%, 85 cases). The least absolute shrinkage and selection operator (LASSO) algorithm was applied to screen for key features: ADC_min (apparent diffusion coefficient minimum), ADC_CoeffOfVar (coefficient of variation of apparent diffusion coefficient), ADC_kurtosis (apparent diffusion coefficient kurtosis) and ADC_entropy (apparent diffusion coefficient entropy). Furthermore, univariate and multivariate logistic regression analyses were performed to select variables and construct a predictive model. Diagnostic performance was evaluated using area under the curve (AUC) of the receiver operating characteristic (ROC), sensitivity, specificity, positive predictive value, negative predictive value, and accuracy. Decision curve analysis (DCA) was also employed to assess clinical net benefit.Results ADC_CoeffOfVar [odds ratio (OR) = 1.01, P = 0.034] and ADC_entropy (OR = 1.00, P < 0.001) were independent predictors of CSPCa. The nomogram model constructed based on these factors demonstrated good predictive performance in both the development set (AUC = 0.844) and the internal validation set (AUC = 0.765). Calibration curve analysis showed a high degree of agreement between model predictions and actual observations, and decision curve analysis further confirmed the net benefit of the model in clinical decision-making.Conclusions The nomogram model constructed based on ADC histogram features not only provides a non-invasive tool for preoperative risk assessment but also holds practical clinical application potential.
[Keywords] prostatic neoplasms;clinically significant prostate cancer;magnetic resonance imaging;nomogram

ZHANG Shuanglin   CHEN Fangming*   GAO Xi  

Department of Radiology, Jiangnan University Medical Center, Wuxi 214002, China

Corresponding author: CHEN F M, E-mail: fmchencoil@126.com

Conflicts of interest   None.

Received  2024-10-25
Accepted  2025-04-10
DOI: 10.12015/issn.1674-8034.2025.04.013
Cite this article as: ZHANG S L, CHEN F M, GAO X. Application of nomogram model based on ADC histogram features in predicting clinically significant prostate cancer in transitional zone[J]. Chin J Magn Reson Imaging, 2025, 16(4): 87-92. DOI:10.12015/issn.1674-8034.2025.04.013.

[1]
SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024[J]. CA A Cancer J Clin, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
[2]
XIE W H, HE Y, GU Y Q, et al. Significance of NLR, MRI, p2PSA, and PHI in the diagnosis of prostate cancer with PSA between 4 and 20 ng/mL[J]. J Clin Urol, 2024, 39(3): 198-202, 205. DOI: 10.13201/j.issn.1001-1420.2024.03.004.
[3]
ZHU L, MENG J, WANG H H, et al. Predicting malignancy of PI-RADS 4-5 lesions with radiomics features based on multiparametric magnetic resonance imaging[J]. Chin J Magn Reson Imag, 2024, 15(4): 93-98, 119. DOI: 10.12015/issn.1674-8034.2024.04.015.
[4]
ZHANG S B, XU Y J, LIU J F, et al. Application of apparent diffusion coefficient to identify low-and medium-high-grade prostate cancer[J]. Int Med Health Guid News, 2022, 28(4): 492-496. DOI: 10.3760/cma.j.issn.1007-1245.2022.04.012.
[5]
LI Z C, WU T Y, LIANG L, et al. Risk factors analysis and nomogram model construction of postoperative pathological upgrade of prostate cancer patients with single core positive biopsy[J]. J Peking Univ Health Sci, 2024, 56(5): 896-901. DOI: 10.19723/j.issn.1671-167X.2024.05.022.
[6]
SHIEKH M, HOUENSTEIN H, RAMAHI Y O, et al. Development and validation of nomogram to improve the specificity of multiparametric MRI for clinically significant prostate cancer[J]. Int J Urol, 2023, 30(10): 876-882. DOI: 10.1111/iju.15225.
[7]
ZHANG R D, ZHOU Y S, LIU S L, et al. The diagnostic value of constructing a nomogram mode based on the PI-RADS v2.1 score of Bp-MRI for predicting PSA(4-20 ng/mL) in prostate cancer[J]. Chin J Magn Reson Imag, 2023, 14(10): 84-89. DOI: 10.12015/issn.1674-8034.2023.10.015.
[8]
XIONG H, HE X J, GUO D J. Value of MRI texture analysis for predicting high-grade prostate cancer[J]. Clin Imaging, 2021, 72: 168-174. DOI: 10.1016/j.clinimag.2020.10.028.
[9]
WIBMER A, HRICAK H, GONDO T, et al. Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different gleason scores[J]. Eur Radiol, 2015, 25(10): 2840-2850. DOI: 10.1007/s00330-015-3701-8.
[10]
XING P Y, CHEN L G, YANG Q S, et al. Differentiating prostate cancer from benign prostatic hyperplasia using whole-lesion histogram and texture analysis of diffusion- and T2-weighted imaging[J/OL]. Cancer Imaging, 2021, 21(1): 54 [2025-03-29]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8477463/. DOI: 10.1186/s40644-021-00423-5.
[11]
MANETTA R, PALUMBO P, GIANNERAMO C, et al. Correlation between ADC values and Gleason score in evaluation of prostate cancer: multicentre experience and review of the literature[J]. Gland Surg, 2019, 8(Suppl 3): S216-S222. DOI: 10.21037/gs.2019.05.02.
[12]
TSURUTA C, HIRATA K, KUDO K, et al. DWI-related texture analysis for prostate cancer: differences in correlation with histological aggressiveness and data repeatability between peripheral and transition zones[J/OL]. Eur Radiol Exp, 2022, 6(1): 16 [2025-03-29]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8752657/. DOI: 10.1186/s41747-021-00252-y.
[13]
REZAEIAN A, TAHMASEBI BIRGANI M J, CHEGENI N, et al. Signal intensity of high B-value diffusion-weighted imaging for the detection of prostate cancer[J/OL]. J Biomed Phys Eng, 2019 [2025-03-29]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6709361/. DOI: 10.31661/jbpe.v0i0.811.
[14]
TAMADA T, UEDA Y, UENO Y, et al. Diffusion-weighted imaging in prostate cancer[J]. MAGMA, 2022, 35(4): 533-547. DOI: 10.1007/s10334-021-00957-6.
[15]
CAGLIC I, SUSHENTSEV N, SYER T, et al. Biparametric MRI in prostate cancer during active surveillance: is it safe?[J]. Eur Radiol, 2024, 34(10): 6217-6226. DOI: 10.1007/s00330-024-10770-z.
[16]
SPINNER J W, PURYSKO A S, WESTPHALEN A C. Enhancing prostate MRI expertise: educational strategies for radiologists[J]. Abdom Radiol, 2024, 49(9): 3175-3182. DOI: 10.1007/s00261-024-04325-5.
[17]
OGREDEN E, OGUZ U, DEMIRELLI E, et al. The role of multiparametric magnetic resonance ımaging in the diagnosis of granulomatous prostatitis mimicking prostate cancer[J]. Abdom Radiol, 2024, 49(7): 2305-2310. DOI: 10.1007/s00261-024-04288-7.
[18]
SHAISH H, KANG S K, ROSENKRANTZ A B. The utility of quantitative ADC values for differentiating high-risk from low-risk prostate cancer: a systematic review and meta-analysis[J]. Abdom Radiol, 2017, 42(1): 260-270. DOI: 10.1007/s00261-016-0848-y.
[19]
LI X Y, LIU Q Q, LI M X, et al. Diagnostic value of high b value apparent diffusion coefficient and dynamic ContrastEnhanced magnetic resonance quantitative parameters in transitional zone prostate cancer[J]. Chin J Med Imag, 2023, 31(10): 1096-1100, 1108. DOI: 10.3969/j.issn.1005-5185.2023.10.018.
[20]
BAYDOUN A, JIA A Y, ZAORSKY N G, et al. Artificial intelligence applications in prostate cancer[J]. Prostate Cancer Prostatic Dis, 2024, 27(1): 37-45. DOI: 10.1038/s41391-023-00684-0.
[21]
LARRY GOLDENBERG S, NIR G, SALCUDEAN S E. A new era: artificial intelligence and machine learning in prostate cancer[J]. Nat Rev Urol, 2019, 16(7): 391-403. DOI: 10.1038/s41585-019-0193-3.
[22]
FERRO M, DE COBELLI O, VARTOLOMEI M D, et al. Prostate cancer radiogenomics-from imaging to molecular characterization[J/OL]. Int J Mol Sci, 2021, 22(18): 9971 [2025-03-29]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8465891/. DOI: 10.3390/ijms22189971.
[23]
FERETZAKIS G, JULIEBØ-JONES P, TSATURYAN A, et al. Emerging trends in AI and radiomics for bladder, kidney, and prostate cancer: A critical review[J/OL]. Cancers, 2024, 16(4): 810 [2025-03-29]. https://pmc.ncbi.nlm.nih.-gov/articles/PMC10886599/. DOI: 10.3390/cancers16040810.
[24]
SAATCHI M, KHATAMI F, MASHHADI R, et al. Diagnostic accuracy of predictive models in prostate cancer: a systematic review and meta-analysis[J/OL]. Prostate Cancer, 2022, 2022: 1742789 [2025-03-29]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9200600/. DOI: 10.1155/2022/1742789.
[25]
BAO J, QIAO X M, SONG Y, et al. Prediction of clinically significant prostate cancer using radiomics models in real-world clinical practice: a retrospective multicenter study[J/OL]. Insights Imaging, 2024, 15(1): 68 [2025-03-29]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10904705/. DOI: 10.1186/s13244-024-01631-w.
[26]
LU Y F, ZHANG Q, YAO W G, et al. Optimizing prostate cancer accumulating model: combined PI-RADS v2 with prostate specific antigen and its derivative data[J/OL]. Cancer Imaging, 2019, 19(1): 26 [2025-03-29]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6533650/. DOI: 10.1186/s40644-019-0208-6.
[27]
LI M, YANG L, YUE Y F, et al. Use of radiomics to improve diagnostic performance of PI-RADS v2.1 in prostate cancer[J/OL]. Front Oncol, 2021, 10: 631831 [2025-03-29]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7925826/. DOI: 10.3389/fonc.2020.631831.
[28]
XU M, FANG M J, ZOU J, et al. Using biparametric MRI radiomics signature to differentiate between benign and malignant prostate lesions[J]. Eur J Radiol, 2019, 114: 38-44. DOI: 10.1016/j.ejrad.2019.02.032.
[29]
WOŹNICKI P, WESTHOFF N, HUBER T, et al. Multiparametric MRI for prostate cancer characterization: combined use of radiomics model with PI-RADS and clinical parameters[J/OL]. Cancers, 2020, 12(7): 1767 [2025-03-29]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7407326/. DOI: 10.3390/cancers12071767.
[30]
ZHANG D D, YOU C, GU Y J. Observer consistency study based on dynamic enhanced MRI radiomics parameters[J]. Oncoradiology, 2021, 30(4): 252-256. DOI: 10.19732/j.cnki.2096-6210.2021.04.004.
[31]
YOU C, LI J W, ZHI W X, et al. The volumetric-tumour histogram-based analysis of intravoxel incoherent motion and non-Gaussian diffusion MRI: association with prognostic factors in HER2-positive breast cancer[J/OL]. J Transl Med, 2019, 17(1): 182 [2025-03-29]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6604303/. DOI: 10.1186/s12967-019-1911-6.

PREV Predictive value of ADCmean combined with PSAD in clinically significant prostate cancer with PI-RADS score ≥ 3
NEXT Preliminary exploration of predicting clinical efficacy after acupuncture and rehabilitation therapy for lumbar disc herniation based on Radiomics Features of MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn