Share:
Share this content in WeChat
X
Review
Research progress of quantitative magnetic resonance technique in the diagnosis of Parkinson's disease
LI Minglong  LI Xianglin  LIU Miaomiao  GUO Rong  NING Hongyu  XU Lumeng  LIU Quanyuan 

Cite this article as: LI M L, LI X L, LIU M M, et al. Research progress of quantitative magnetic resonance technique in the diagnosis of Parkinson's disease[J]. Chin J Magn Reson Imaging, 2025, 16(4): 108-113. DOI:10.12015/issn.1674-8034.2025.04.017.


[Abstract] Parkinson's disease (PD) is the second most common neurological illness among middle-aged and elderly persons worldwide. In the early stages of the disease, it may only manifest as a slight tremor in the hands, making it easy to overlook; however, as the disease progresses, the patient's walking, thinking, sleeping, and so on will be affected, and eventually, he or she will be unable to care for himself or herself due to the inability to move around and become bedridden for an extended period of time. As a result, correct disease identification at an early stage can lead to better therapy, reduce disease progression, and improve prognosis. Quantitative MRI approaches can give non-invasive information on neuronal activity and metabolite changes in PD brain tissue, as well as the underlying biological characteristics of the disorders. In this article, we will look at how quantitative MRI techniques can aid with early PD diagnosis, lesion evaluation, treatment, and prognosis in clinical practice.
[Keywords] Parkinson's disease;magnetic resonance imaging;quantitative techniques;chemical exchange saturation transfer;neuromelanin imaging

LI Minglong1   LI Xianglin2   LIU Miaomiao2   GUO Rong1   NING Hongyu2   XU Lumeng1   LIU Quanyuan1*  

1 Department of Radiology, Affiliated Hospital of Binzhou Medical College, Binzhou 256603, China

2 School of Medical Imaging Binzhou Medical University, Yantai 264003, China

Corresponding author: LIU Q Y, E-mail: byfylqy@163.com

Conflicts of interest   None.

Received  2024-12-12
Accepted  2025-04-10
DOI: 10.12015/issn.1674-8034.2025.04.017
Cite this article as: LI M L, LI X L, LIU M M, et al. Research progress of quantitative magnetic resonance technique in the diagnosis of Parkinson's disease[J]. Chin J Magn Reson Imaging, 2025, 16(4): 108-113. DOI:10.12015/issn.1674-8034.2025.04.017.

[1]
BEN-SHLOMO Y, DARWEESH S, LLIBRE-GUERRA J, et al. The epidemiology of Parkinson's disease[J]. Lancet, 2024, 403(10423): 283-292. DOI: 10.1016/S0140-6736(23)01419-8.
[2]
CHOI Y, KIM D. Effects of Task-Based LSVT-BIG Intervention on Hand Function, Activity of Daily Living, Psychological Function, and Quality of Life in Parkinson's Disease: A Randomized Control Trial[J/OL]. Occup Ther Int, 2022, 2022: 1700306 [2024-12-12]. https://doi.org/10.1155/2022/1700306. DOI: 10.1155/2022/1700306.
[3]
MISHRA A K, DIXIT A. Dopaminergic Axons: Key Recitalists in Parkinson's Disease[J]. Neurochem Res, 2022, 47(2): 234-248. DOI: 10.1007/s11064-021-03464-1.
[4]
CHENG H, ULANE C M, BURKE R E. Clinical progression in Parkinson disease and the neurobiology of axons[J]. Ann Neurol, 2010, 67(6): 715-725. DOI: 10.1002/ana.21995.
[5]
KALINDERI K, PAPALIAGKAS V, FIDANI L. GLP-1 Receptor Agonists: A New Treatment in Parkinson's Disease[J/OL]. Int J Mol Sci, 2024, 25(7): 3812 [2024-12-12]. https://doi.org/10.3390/ijms25073812. DOI: 10.3390/ijms25073812.
[6]
MUNHOZ R P, TUMAS V, PEDROSO J L, et al. The clinical diagnosis of Parkinson's disease[J]. Arq Neuropsiquiatr, 2024, 82(6): 1-10. DOI: 10.1055/s-0043-1777775.
[7]
HALLER S, HAACKE E M, THURNHER M M, et al. Susceptibility-weighted Imaging: Technical Essentials and Clinical Neurologic Applications[J]. Radiology, 2021, 299(1): 3-26. DOI: 10.1148/radiol.2021203071.
[8]
KHALIL A, KASHIF M. Nuclear Magnetic Resonance Spectroscopy for Quantitative Analysis: A Review for Its Application in the Chemical, Pharmaceutical and Medicinal Domains[J]. Crit Rev Anal Chem, 2023, 53(5): 997-1011. DOI: 10.1080/10408347.2021.2000359.
[9]
VIDOVIC M, RIKALOVIC M G. Alpha-Synuclein Aggregation Pathway in Parkinson's Disease: Current Status and Novel Therapeutic Approaches[J/OL]. Cells, 2022, 11(11): 1732 [2024-12-12]. https://doi.org/10.3390/cells11111732. DOI: 10.3390/cells11111732.
[10]
HUANG P, ZHANG Z, ZHANG P, et al. TREM2 Deficiency Aggravates NLRP3 Inflammasome Activation and Pyroptosis in MPTP-Induced Parkinson's Disease Mice and LPS-Induced BV2 Cells[J]. Mol Neurobiol, 2024, 61(5): 2590-2605. DOI: 10.1007/s12035-023-03713-0.
[11]
GUAN J J, FENG Y Q. Quantitative magnetic resonance imaging of brain iron deposition: comparison between quantitative susceptibility mapping and transverse relaxation rate (R2*) mapping[J]. Nan Fang Yi Ke Da Xue Xue Bao, 2018, 38(3): 305-311. DOI: 10.3969/j.issn.1673-4254.2018.03.10.
[12]
KAN H, UCHIDA Y, UEKI Y, et al. R2* relaxometry analysis for mapping of white matter alteration in Parkinson's disease with mild cognitive impairment[J/OL]. Neuroimage Clin, 2022, 33: 102938 [2024-12-12]. https://doi.org/10.1016/j.nicl.2022.102938. DOI: 10.1016/j.nicl.2022.102938.
[13]
SONG R, LOEFFLER R B, HOLTROP J L, et al. Fast quantitative parameter maps without fitting: Integration yields accurate mono-exponential signal decay rates[J]. Magn Reson Med, 2018, 79(6): 2978-2985. DOI: 10.1002/mrm.26964.
[14]
GAO Y, CLOOS M, LIU F, et al. Accelerating quantitative susceptibility and R2* mapping using incoherent undersampling and deep neural network reconstruction[J/OL]. Neuroimage, 2021, 240: 118404 [2024-12-12]. https://doi.org/10.1016/j.neuroimage.2021.118404. DOI: 10.1016/j.neuroimage.2021.118404.
[15]
AIMO A, HUANG L, TYLER A, et al. Quantitative susceptibility mapping (QSM) of the cardiovascular system: challenges and perspectives[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 48 [2024-12-12]. https://doi.org/10.1186/s12968-022-00883-z. DOI: 10.1186/s12968-022-00883-z.
[16]
WANG R Q, ZHAN Y J, PEI J. Study on the application of quantitative susceptibility mapping in the diagnosis and progression tracking of Alzheimer's disease[J] Chin J Magn Reson Imaging, 2024, 15(5): 187-191. DOI: 10.12015/issn.1674-8034.2024.05.030.
[17]
GUAN X, XUAN M, GU Q, et al. Regionally progressive accumulation of iron in Parkinson's disease as measured by quantitative susceptibility mapping[J/OL]. NMR Biomed, 2017, 30(4): 10.1002/nbm.3489 [2024-12-12]. https://doi.org/10.1002/nbm.3489. DOI: 10.1002/nbm.3489.
[18]
GUAN X, XUAN M, GU Q, et al. Influence of regional iron on the motor impairments of Parkinson's disease: A quantitative susceptibility mapping study[J]. J Magn Reson Imaging, 2017, 45(5): 1335-1342. DOI: 10.1002/jmri.25434.
[19]
FENG R, ZHAO J, WANG H, et al. MoDL-QSM: Model-based deep learning for quantitative susceptibility mapping[J/OL]. Neuroimage, 2021, 240: 118376 [2024-12-12]. https://doi.org/10.1016/j.neuroimage.2021.118376. DOI: 10.1016/j.neuroimage.2021.118376.
[20]
NIKPARAST F, GANJI Z, DANESH DOUST M, et al. Brain pathological changes during neurodegenerative diseases and their identification methods: How does QSM perform in detecting this process?[J/OL]. Insights Imaging, 2022, 13(1): 74 [2024-12-12]. https://doi.org/10.1186/s13244-022-01207-6. DOI: 10.1186/s13244-022-01207-6.
[21]
KOOLSCHIJN R S, CLARKE W T, IP I B, et al. Event-related functional magnetic resonance spectroscopy[J/OL]. Neuroimage, 2023, 276: 120194 [2024-12-12]. https://doi.org/10.1016/j.neuroimage.2023.120194. DOI: 10.1016/j.neuroimage.2023.120194.
[22]
GRIFFITHS J R. Magnetic resonance spectroscopy ex vivo: A short historical review[J/OL]. NMR Biomed, 2023, 36(4): e4740 [2024-12-12]. https://doi.org/10.1002/nbm.4740. DOI: 10.1002/nbm.4740.
[23]
ZHENG Z X, MA G L, DENG M X. The Value of Magnetic Resonance Spectroscopy in the Early Diagnosis of Parkinson's Disease[J]. J Med Theor & Prac, 2021, 34(23): 4147-4149. DOI: 10.19381/j.issn.1001-7585.2021.23.048.
[24]
GUAN J, RONG Y, WEN Y, et al. Detection and application of neurochemical profile by multiple regional (1)H-MRS in Parkinson's disease[J/OL]. Brain Behav, 2017, 7(9): e792 [2024-12-12]. https://doi.org/10.1002/brb3.792. DOI: 10.1002/brb3.792.
[25]
MILOT L. Amide Proton Transfer-weighted MRI: Insight into Cancer Cell Biology[J]. Radiology, 2022, 305(1): 135-136. DOI: 10.1148/radiol.221376.
[26]
LI C, CHEN M, ZHAO X, et al. Chemical Exchange Saturation Transfer MRI Signal Loss of the Substantia Nigra as an Imaging Biomarker to Evaluate the Diagnosis and Severity of Parkinson's Disease[J/OL]. Front Neurosci, 2017, 11: 489 [2024-12-12]. https://doi.org/10.3389/fnins.2017.00489. DOI: 10.3389/fnins.2017.00489.
[27]
TIAN Y, LI X, WANG X, et al. CEST 2022-three-dimensional amide proton transfer (APT) imaging can identify the changes of cerebral cortex in Parkinson's disease[J]. Magn Reson Imaging, 2023, 102: 235-241. DOI: 10.1016/j.mri.2023.06.006.
[28]
BOOTH T C, WIEGERS E C, WARNERT E A H, et al. High-Grade Glioma Treatment Response Monitoring Biomarkers: A Position Statement on the Evidence Supporting the Use of Advanced MRI Techniques in the Clinic, and the Latest Bench-to-Bedside Developments. Part 2: Spectroscopy, Chemical Exchange Saturation, Multiparametric Imaging, and Radiomics[J/OL]. Front Oncol, 2021, 11: 811425 [2024-12-12]. https://doi.org/10.3389/fonc.2021.811425. DOI: 10.3389/fonc.2021.811425.
[29]
ZHOU J, SUN W, LI H, et al. Application of 5T glutamate chemical exchange saturation transfer imaging in brain tumors: preliminary results[J]. J Neurooncol, 2024, 169(3): 581-589. DOI: 10.1007/s11060-024-04759-3
[30]
CEMBER A T J, NANGA R P R, REDDY R. Glutamate-weighted CEST (gluCEST) imaging for mapping neurometabolism: An update on the state of the art and emerging findings from in vivo applications[J/OL]. NMR Biomed, 2023, 36(6): e4780 [2024-12-12]. https://doi.org/10.1002/nbm.4780. DOI: 10.1002/nbm.4780.
[31]
SHEJUL P P, DOSHI G M. Glutamate Receptors and C-ABL Inhibitors: A New Therapeutic Approach for Parkinson's Disease[J]. Cent Nerv Syst Agents Med Chem, 2024, 24(1): 22-44. DOI: 10.2174/0118715249268627231206115942.
[32]
BAGGA P, PICKUP S, CRESCENZI R, et al. In vivo GluCEST MRI: Reproducibility, background contribution and source of glutamate changes in the MPTP model of Parkinson's disease[J/OL]. Sci Rep, 2018, 8(1): 2883 [2024-12-12]. https://doi.org/10.1038/s41598-018-21035-3. DOI: 10.1038/s41598-018-21035-3.
[33]
PERLMAN O, ITO H, HERZ K, et al. Quantitative imaging of apoptosis following oncolytic virotherapy by magnetic resonance fingerprinting aided by deep learning[J]. Nat Biomed Eng, 2022, 6(5): 648-657. DOI: 10.1038/s41551-021-00809-7.
[34]
ZHANG Y, BUROCK M A. Diffusion Tensor Imaging in Parkinson's Disease and Parkinsonian Syndrome: A Systematic Review[J/OL]. Front Neurol, 2020, 11: 531993 [2024-12-12]. https://doi.org/10.3389/fneur.2020.531993. DOI: 10.3389/fneur.2020.531993.
[35]
LENFELDT N, HANSSON W, LARSSON A, et al. Diffusion tensor imaging and correlations to Parkinson rating scales[J]. J Neurol, 2013, 260(11): 2823-2830. DOI: 10.1007/s00415-013-7080-2.
[36]
WEN M, HENG H S E, LU Z, et al. Differential White Matter Regional Alterations in Motor Subtypes of Early Drug-Naive Parkinson's Disease Patients[J]. Neurorehabil Neural Repair, 2018, 32(2): 129-141. DOI: 10.1177/1545968317753075.
[37]
LUAN W, CHEN F, ZHANG Y, et al. Differential diagnosis value of magnetic resonance diffusion tensor imaging of deep brain nuclei for different motor subtypes of Parkinson's disease[J]. Chin J Anat Clin, 2021, 26(4): 379-386. DOI: 10.3760/cma.j.cn101202-20201221-00417.
[38]
LE H, ZENG W, ZHANG H, et al. Mean Apparent Propagator MRI Is Better Than Conventional Diffusion Tensor Imaging for the Evaluation of Parkinson's Disease: A Prospective Pilot Study[J/OL]. Front Aging Neurosci, 2020, 12: 563595 [2024-12-12]. https://doi.org/10.3389/fnagi.2020.563595. DOI: 10.3389/fnagi.2020.563595.
[39]
TIAN Q, LI Z, FAN Q, et al. SDnDTI: Self-supervised deep learning-based denoising for diffusion tensor MRI[J/OL]. Neuroimage, 2022, 253: 119033 [2024-12-12]. https://doi.org/10.1016/j.neuroimage.2022.119033. DOI: 10.1016/j.neuroimage.2022.119033.
[40]
SEYEDMIRZAEI H, NABIZADEH F, AARABI M H, et al. Neurite Orientation Dispersion and Density Imaging in Multiple Sclerosis: A Systematic Review[J]. J Magn Reson Imaging, 2023, 58(4): 1011-1029. DOI: 10.1002/jmri.28727.
[41]
HUANG X P, HAN H Y, WANG M, et al. Clinical research of NODDI technology in deep brain nucleus of Parkinson's disease[J] Chin J Magn Reson Imaging, 2021, 12(3): 6-9. DOI: 10.12015/issn.1674-8034.2021.03.002.
[42]
LIU W X, LU P, ZHANG X B, et al. Clinical application of magnetic resonance NODDI in the diagnosis of putamen disease in patients with Parkinson's disease[J]. Chin J Magn Reson Imaging, 2020, 11(8): 610-614. DOI: 10.12015/issn.1674-8034.2020.08.003.
[43]
KAMIYA K, HORI M, AOKI S. NODDI in clinical research[J/OL]. J Neurosci Methods, 2020, 346: 108908 [2024-12-12]. https://doi.org/10.1016/j.jneumeth.2020.108908. DOI: 10.1016/j.jneumeth.2020.108908.
[44]
HUDDLESTON D E, CHEN X, HWANG K, et al. Neuromelanin-sensitive MRI correlates of cognitive and motor function in Parkinson's disease with freezing of gait[J/OL]. Front Dement, 2023, 2: 1215505 [2024-12-12]. https://doi.org/10.1101/2023.07.04.23292227. DOI: 10.1101/2023.07.04.23292227.
[45]
CAI W, WAKAMATSU K, ZUCCA F A, et al. DOPA pheomelanin is increased in nigral neuromelanin of Parkinson's disease[J/OL]. Prog Neurobiol, 2023, 223: 102414 [2024-12-12]. https://doi.org/10.1016/j.pneurobio.2023.102414. DOI: 10.1016/j.pneurobio.2023.102414.
[46]
HE N, CHEN Y, LEWITT P A, et al. Application of Neuromelanin MR Imaging in Parkinson Disease[J]. J Magn Reson Imaging, 2023, 57(2): 337-352. DOI: 10.1002/jmri.28414.
[47]
NAGATSU T, NAKASHIMA A, WATANABE H, et al. Neuromelanin in Parkinson's Disease: Tyrosine Hydroxylase and Tyrosinase[J/OL]. Int J Mol Sci, 2022, 23(8): 4176 [2024-12-12]. https://doi.org/10.3390/ijms23084176. DOI: 10.3390/ijms23084176.
[48]
ZUCCA F A, CAPUCCIATI A, BELLEI C, et al. Neuromelanins in brain aging and Parkinson's disease: synthesis, structure, neuroinflammatory, and neurodegenerative role[J]. IUBMB Life, 2023, 75(1): 55-65. DOI: 10.1002/iub.2654.
[49]
YAN Y, ZHANG M, REN W, et al. Neuromelanin-sensitive magnetic resonance imaging: Possibilities and promises as an imaging biomarker for Parkinson's disease[J]. Eur J Neurosci, 2024, 59(10): 2616-2627. DOI: 10.1111/ejn.16296.
[50]
XING Y, SAPUAN A H, MARTIN-BASTIDA A, et al. Neuromelanin-MRI to Quantify and Track Nigral Depigmentation in Parkinson's Disease: A Multicenter Longitudinal Study Using Template-Based Standardized Analysis[J]. Mov Disord, 2022, 37(5): 1028-1039. DOI: 10.1002/mds.28934.
[51]
TOLOSA E, GARRIDO A, SCHOLZ S W, et al. Challenges in the diagnosis of Parkinson's disease[J]. Lancet Neurol, 2021, 20(5): 385-397. DOI: 10.1016/S1474-4422(21)00030-2.

PREV ATP1A2 mutation familial hemiplegic migraine: One case report
NEXT Research progress of Functional Connectivity in self-limited epilepsy with centrotemporal spikes
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn