Share:
Share this content in WeChat
X
Review
Research progress of Functional Connectivity in self-limited epilepsy with centrotemporal spikes
GU Xiaoyu  ZHANG Jiaren  SONG Linfeng  WANG Junjun  JIANG Lin 

Cite this article as: GU X Y, ZHANG J R, SONG L F, et al. Research progress of Functional Connectivity in self-limited epilepsy with centrotemporal spikes[J]. Chin J Magn Reson Imaging, 2025, 16(4): 114-119, 138. DOI:10.12015/issn.1674-8034.2025.04.018.


[Abstract] Self-limited epilepsy with centrotemporal spikes (SeLECTS) is the most common age-dependent, self-limited focal epilepsy of childhood, characterised by interictal centrotemporal (Rolandic) spikes on the EEG. Although SeLECTS is considered self-limiting, some children have cognitive deficits in language, reading, visuospatial, executive function and attention. These deficits may be related to abnormalities in functional connectivity (FC), which can be paradoxically increased and decreased in different brain regions at the same time. This paper briefly introduces common functional connectivity research methods, summarises the strengths and weaknesses of these methods, and also summarises the research progress of FC in SeLECTS over the past years, with the aim of exploring the potential of FC as a biomarker for predicting cognitive and seizure outcomes.
[Keywords] self-limited epilepsy with centrotemporal spikes;Rolandic epilepsy;magnetic resonance imaging;functional magnetic resonance imaging;brain network;functional connectivity

GU Xiaoyu   ZHANG Jiaren   SONG Linfeng   WANG Junjun   JIANG Lin*  

Department of Radiology, the Third Affiliated Hospital of Zunyi Medical University (the First People's Hospital of Zunyi), Zunyi 563000, China

Corresponding author: JIANG L, E-mail: jlinzmc@163.com

Conflicts of interest   None.

Received  2024-10-02
Accepted  2025-04-10
DOI: 10.12015/issn.1674-8034.2025.04.018
Cite this article as: GU X Y, ZHANG J R, SONG L F, et al. Research progress of Functional Connectivity in self-limited epilepsy with centrotemporal spikes[J]. Chin J Magn Reson Imaging, 2025, 16(4): 114-119, 138. DOI:10.12015/issn.1674-8034.2025.04.018.

[1]
DRYŻAŁOWSKI P, JÓŹWIAK S, FRANCKIEWICZ M, et al. Benign epilepsy with centrotemporal spikes - Current concepts of diagnosis and treatment[J]. Neurol Neurochir Pol, 2018, 52(6): 677-689. DOI: 10.1016/j.pjnns.2018.08.010.
[2]
SPECCHIO N, WIRRELL E C, SCHEFFER I E, et al. International League Against Epilepsy classification and definition of epilepsy syndromes with onset in childhood: Position paper by the ILAE Task Force on Nosology and Definitions[J]. Epilepsia, 2022, 63(6): 1398-1442. DOI: 10.1111/epi.17241.
[3]
JIANG S, LUO C, HUANG Y, et al. Altered Static and Dynamic Spontaneous Neural Activity in Drug-Naïve and Drug-Receiving Benign Childhood Epilepsy With Centrotemporal Spikes[J/OL]. Front Hum Neurosci, 2020, 14: 361 [2024-10-02]. https://www.frontiersin.org/article/10.3389/fnhum.2020.00361/full. DOI: 10.3389/fnhum.2020.00361.
[4]
JONES J E. Functional connectivity differences in speech production networks in Chinese children with Rolandic epilepsy[J/OL]. Epilepsy Behav, 2022, 135: 108871 [2024-10-02]. https://linkinghub.elsevier.com/retrieve/pii/S1525505022003201. DOI: 10.1016/j.yebeh.2022.108871.
[5]
LV H, WANG Z, TONG E, et al. Resting-State Functional MRI: Everything That Nonexperts Have Always Wanted to Know[J]. AJNR Am J Neuroradiol, 2018, 39(8): 1390-1399. DOI: 10.3174/ajnr.A5527.
[6]
SOHN W S, YOO K, LEE Y B, et al. Influence of ROI selection on resting state functional connectivity: an individualized approach for resting state fMRI analysis[J/OL]. Front Neurosci, 2015, 9: 280 [2024-10-02]. http://journal.frontiersin.org/Article/10.3389/fnins.2015.00280/abstract. DOI: 10.3389/fnins.2015.00280.
[7]
LIU L P, YANG X L, LI Z W. EEG Classification of Epilepsy Based on Edge-center Network Feature Extraction[J]. Computer and Modernization, 2024(5): 22-26. DOI: 10.3969/j.issn.1006-2475.2024.05.005.
[8]
RODRIGUEZ R X, NOBLE S, TEJAVIBULYA L, et al. Leveraging edge-centric networks complements existing network-level inference for functional connectomes[J/OL]. Neuroimage, 2022, 264: 119742 [2024-10-02]. https://linkinghub.elsevier.com/retrieve/pii/S1053811922008631. DOI: 10.1016/j.neuroimage.2022.119742.
[9]
HU J, CHEN G, ZENG Z, et al. Systematically altered connectome gradient in benign childhood epilepsy with centrotemporal spikes: Potential effect on cognitive function[J/OL]. Neuroimage Clin, 2024, 43: 103628 [2024-10-02]. https://linkinghub.elsevier.com/retrieve/pii/S2213158224000676. DOI: 10.1016/j.nicl.2024.103628.
[10]
ZHANG Q, LI J, HE Y, et al. Atypical functional connectivity hierarchy in Rolandic epilepsy[J/OL]. Commun Biol, 2023, 6(1): 704 [2024-10-02]. https://www.nature.com/articles/s42003-023-05075-8. DOI: 10.1038/s42003-023-05075-8.
[11]
OFER I, JACOBS J, JAISER N, et al. Cognitive and behavioral comorbidities in Rolandic epilepsy and their relation with default mode network's functional connectivity and organization[J]. Epilepsy Behav, 2018, 78: 179-186. DOI: 10.1016/j.yebeh.2017.10.013.
[12]
DRENTHEN G S, FASEN F, FONSECA WALD E L A, et al. Functional brain network characteristics are associated with epilepsy severity in childhood absence epilepsy[J/OL]. Neuroimage Clin, 2020, 27: 102264 [2024-10-02]. https://linkinghub.elsevier.com/retrieve/pii/S2213158220301017. DOI: 10.1016/j.nicl.2020.102264.
[13]
CARBONI M, DE STEFANO P, VORDERWÜLBECKE B J, et al. Abnormal directed connectivity of resting state networks in focal epilepsy[J/OL]. Neuroimage Clin, 2020, 27: 102336 [2024-10-02]. https://linkinghub.elsevier.com/retrieve/pii/S221315822030173X. DOI: 10.1016/j.nicl.2020.102336.
[14]
MEDINA VILLALON S, MAKHALOVA J, LÓPEZ-MADRONA V J, et al. Combining independent component analysis and source localization for improving spatial sampling of stereoelectroencephalography in epilepsy[J/OL]. Sci Rep, 2024, 14(1): 4071 [2024-10-02]. https://www.nature.com/articles/s41598-024-54359-4. DOI: 10.1038/s41598-024-54359-4.
[15]
GKIATIS K, GARGANIS K, KARANASIOU I, et al. Independent component analysis: a reliable alternative to general linear model for task-based fMRI[J/OL]. Front Psychiatry, 2023, 14: 1214067 [2024-10-02]. https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1214067/full. DOI: 10.3389/fpsyt.2023.1214067.
[16]
FATEH A A, SMAHI A, HASSAN M, et al. From brain connectivity to cognitive function: Dissecting the salience network in pediatric BECTS-ESES[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2024, 135: 111110 [2024-10-02]. https://linkinghub.elsevier.com/retrieve/pii/S0278584624001787. DOI: 10.1016/j.pnpbp.2024.111110.
[17]
DAI X J, LIU H, YANG Y, et al. Brain network excitatory/inhibitory imbalance is a biomarker for drug-naive Rolandic epilepsy: A radiomics strategy[J]. Epilepsia, 2021, 62(10): 2426-2438. DOI: 10.1111/epi.17011.
[18]
COELLI S, MEDINA VILLALON S, BONINI F, et al. Comparison of beamformer and ICA for dynamic connectivity analysis: A simultaneous MEG-SEEG study[J/OL]. Neuroimage, 2023, 265: 119806 [2024-10-02]. https://linkinghub.elsevier.com/retrieve/pii/S1053811922009272. DOI: 10.1016/j.neuroimage.2022.119806.
[19]
LI R, LIAO W, YU Y, et al. Differential patterns of dynamic functional connectivity variability of striato-cortical circuitry in children with benign epilepsy with centrotemporal spikes[J]. Hum Brain Mapp, 2018, 39(3): 1207-1217. DOI: 10.1002/hbm.23910.
[20]
JIANG S, LI H, PEI H, et al. Connective profiles and antagonism between dynamic and static connectivity underlying generalized epilepsy[J]. Brain Struct Funct, 2021, 226(5): 1423-1435. DOI: 10.1007/s00429-021-02248-1.
[21]
WU Z, PAN S, CHEN F, et al. A Comprehensive Survey on Graph Neural Networks[J]. IEEE Trans Neural Netw Learn Syst, 2021, 32(1): 4-24. DOI: 10.1109/TNNLS.2020.2978386.
[22]
BESSADOK A, MAHJOUB M A, REKIK I. Graph Neural Networks in Network Neuroscience[J]. IEEE Trans Pattern Anal Mach Intell, 2023, 45(5): 5833-5848. DOI: 10.1109/TPAMI.2022.3209686.
[23]
PAN J C, DONG Y H, CHEN H H. Review of Research on Auxiliary Diagnosis of Autism Based on Graph Neural Networks[J]. Computer Engineering, 2022, 48(9): 1-11. DOI: 10.19678/j.issn.1000-3428.0064352.
[24]
SHANG S, ZHU S, WU J, et al. Topological disruption of high-order functional networks in cognitively preserved Parkinson's disease[J]. CNS Neurosci Ther, 2023, 29(2): 566-576. DOI: 10.1111/cns.14037.
[25]
JIANG X, ZHOU Y, ZHANG Y, et al. Estimating High-Order Brain Functional Networks in Bayesian View for Autism Spectrum Disorder Identification[J/OL]. Front Neurosci, 2022, 16: 872848 [2024-10-02]. https://www.frontiersin.org/articles/10.3389/fnins.2022.872848/full. DOI: 10.3389/fnins.2022.872848.
[26]
WANG A, DONG T, WEI T, et al. Large-scale networks changes in Wilson's disease associated with neuropsychiatric impairments: a resting-state functional magnetic resonance imaging study[J/OL]. BMC Psychiatry, 2023, 23(1): 805 [2024-10-02]. https://bmcpsychiatry.biomedcentral.com/articles/10.1186/s12888-023-05236-3. DOI: 10.1186/s12888-023-05236-3.
[27]
ZHANG X, YANG L, LU J, et al. Reconfiguration of brain network dynamics in bipolar disorder: a hidden Markov model approach[J/OL]. Transl Psychiatry, 2024, 14(1): 507 [2024-10-02]. https://www.nature.com/articles/s41398-024-03212-3. DOI: 10.1038/s41398-024-03212-3.
[28]
TAN G, XIAO F, CHEN S, et al. Frequency-specific alterations in the amplitude and synchronization of resting-state spontaneous low-frequency oscillations in benign childhood epilepsy with centrotemporal spikes[J]. Epilepsy Res, 2018, 145: 178-184. DOI: 10.1016/j.eplepsyres.2018.07.007.
[29]
KLAASSENS B L, VAN GERVEN J M A, VAN DER GROND J, et al. Diminished Posterior Precuneus Connectivity with the Default Mode Network Differentiates Normal Aging from Alzheimer's Disease[J/OL]. Front Aging Neurosci, 2017, 9: 97 [2024-10-02]. http://journal.frontiersin.org/article/10.3389/fnagi.2017.00097/full. DOI: 10.3389/fnagi.2017.00097.
[30]
XU K, WANG F, GENG B, et al. Abnormal percent amplitude of fluctuation and functional connectivity within and between networks in benign epilepsy with centrotemporal spikes[J/OL]. Epilepsy Res, 2022, 185: 106989 [2024-10-02]. https://linkinghub.elsevier.com/retrieve/pii/S0920121122001401. DOI: 10.1016/j.eplepsyres.2022.106989.
[31]
YANG S, ZHANG Z, CHEN H, et al. Temporal variability profiling of the default mode across epilepsy subtypes[J]. Epilepsia, 2021, 62(1): 61-73. DOI: 10.1111/epi.16759.
[32]
OVERVLIET G M, BESSELING R M H, VAN DER KRUIJS S J M, et al. Clinical evaluation of language fundamentals in Rolandic epilepsy, an assessment with CELF-4[J]. Eur J Paediatr Neurol, 2013, 17(4): 390-396. DOI: 10.1016/j.ejpn.2013.01.001.
[33]
VANNEST J, SZAFLARSKI J P, EATON K P, et al. Functional magnetic resonance imaging reveals changes in language localization in children with benign childhood epilepsy with centrotemporal spikes[J]. J Child Neurol, 2013, 28(4): 435-445. DOI: 10.1177/0883073812447682.
[34]
MA Y, CHEN G, WANG Y, et al. Language dysfunction is associated with age of onset of benign epilepsy with centrotemporal spikes in children[J]. Eur Neurol, 2015, 73(3-4): 179-183. DOI: 10.1159/000371417.
[35]
LI X H, XU C W, XIE S H, et al. Low Frequency Amplitude in BECTS Children with Cognitive Impairment[J]. Journal of Clinical Radiology, 2021, 40(9): 1812-1815. DOI: 10.13437/j.cnki.jcr.2021.09.032.
[36]
KIM H J, LEE J H, PARK C H, et al. Role of Language-Related Functional Connectivity in Patients with Benign Childhood Epilepsy with Centrotemporal Spikes[J]. J Clin Neurol, 2018, 14(1): 48-57. DOI: 10.3988/jcn.2018.14.1.48.
[37]
JIANG N, YANG C M, WANG J L, et al. The Association Between Sleep Problems and Attentional Network Functions in Patients with Self-Limited Epilepsy with Centrotemporal Spikes[J]. Nat Sci Sleep, 2024, 16: 751-760. DOI: 10.2147/NSS.S460558.
[38]
LIMA E M, RZEZAK P, MONTENEGRO M A, et al. Social cognition in childhood epilepsy with centrotemporal spikes[J]. Seizure, 2020, 78: 102-108. DOI: 10.1016/j.seizure.2020.03.014.
[39]
SOUSA E, PINTO M, FERREIRA M, et al. Neurocognitive and psychological comorbidities in patients with self-limited centrotemporal spike epilepsy. A case-control study[J]. Rev Neurol, 2023, 76(5): 153-158. DOI: 10.33588/rn.7605.2022385.
[40]
JIANG L, MA X, LIU H, et al. Aberrant Dynamics of Regional Coherence Measured by Resting-State fMRI in Children With Benign Epilepsy With Centrotemporal Spikes (BECTS)[J/OL]. Front Neurol, 2021, 12: 712071 [2024-10-02]. https://www.frontiersin.org/articles/10.3389/fneur.2021.712071/full. DOI: 10.3389/fneur.2021.712071.
[41]
YANG Y, WANG F, ANDRADE-MACHADO R, et al. Disrupted functional connectivity patterns of the left inferior frontal gyrus subregions in benign childhood epilepsy with centrotemporal spikes[J]. Transl Pediatr, 2022, 11(9): 1552-1561. DOI: 10.21037/tp-22-270.
[42]
KLAUS J, HARTWIGSEN G. Dissociating semantic and phonological contributions of the left inferior frontal gyrus to language production[J]. Hum Brain Mapp, 2019, 40(11): 3279-3287. DOI: 10.1002/hbm.24597.
[43]
HE W, LIU H, LIU Z, et al. Electrical status epilepticus in sleep affects intrinsically connected networks in patients with benign childhood epilepsy with centrotemporal spikes[J/OL]. Epilepsy Behav, 2020, 106: 107032 [2024-10-02]. https://linkinghub.elsevier.com/retrieve/pii/S1525505020302110. DOI: 10.1016/j.yebeh.2020.107032.

PREV Research progress of quantitative magnetic resonance technique in the diagnosis of Parkinson,s disease
NEXT Neuroimaging advances in acupuncture for mild cognitive impairment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn