Share:
Share this content in WeChat
X
Review
Progress on multimodal imaging technology in the brains of Crohn's disease patients with negative emotions
YU Li  YANG Ling  WU Xinyan  TANG Kaiqiang  ZHANG Lingqin  LI Kang 

Cite this article as: YU L, YANG L, WU X Y, et al. Progress on multimodal imaging technology in the brains of Crohn's disease patients with negative emotions[J]. Chin J Magn Reson Imaging, 2025, 16(4): 132-138. DOI:10.12015/issn.1674-8034.2025.04.021.


[Abstract] Patients with Crohn's disease (CD) often experience negative emotions such as anxiety and depression, which not only potentially compromise their mental health but also aggravate the disease progression and diminish their quality of life. Currently, clinical recognition of the negative emotions commonly associated with CD is limited. Standard anti-inflammatory treatments are ineffective in alleviating these symptoms, and the diagnostic methods available are subjective and restricted. Therefore, finding objective assessment methods to guide clinical diagnosis and treatment has become a critical issue. An increasing number of studies suggest that the development of negative emotions in CD patients is closely linked to structural and functional changes in specific brain regions. Currently, multimodal imaging techniques, such as structural magnetic resonance imaging, functional magnetic resonance imaging, and near-infrared spectroscopy, have been widely applied in the study of brain function and structural changes, demonstrating significant clinical value. This review will summarize the recent findings based on multimodal imaging techniques that have identified brain structural and functional changes associated with negative emotions such as anxiety and depression in CD patients. These findings provide neuroimaging-based evidence for future assessments and treatments of CD patients with comorbid negative emotions.
[Keywords] Crohn's disease;anxiety;depression;magnetic resonance imaging;structural magnetic resonance imaging;functional magnetic resonance imaging;near-infrared spectroscopy

YU Li1, 2, 3   YANG Ling2, 3   WU Xinyan2, 3, 4   TANG Kaiqiang2, 3   ZHANG Lingqin2, 3   LI Kang1, 2, 3*  

1 Chongqing Medical University, Chongqing 400016, China

2 Department of Radiology, Chongqing General Hospital, Chongqing University, Chongqing 401147, China

3 Department of Radiology, Chongqing General Hospital, Chongqing 401147, China

4 North Sichuan Medical Colledge, Nanchong 637100, China

Corresponding author: LI K, E-mail: lkrmyydoctor@126.com

Conflicts of interest   None.

Received  2025-01-09
Accepted  2025-04-10
DOI: 10.12015/issn.1674-8034.2025.04.021
Cite this article as: YU L, YANG L, WU X Y, et al. Progress on multimodal imaging technology in the brains of Crohn's disease patients with negative emotions[J]. Chin J Magn Reson Imaging, 2025, 16(4): 132-138. DOI:10.12015/issn.1674-8034.2025.04.021.

[1]
GRACIE D J, FORD A C. Crohn's disease connectome conundrums: Relevance to the prevalence and management of mood disorders[J]. Gastroenterology, 2019, 157(5): 1429-1430. DOI: 10.1053/j.gastro.2019.09.030.
[2]
YANG L, HE P, ZHANG L, et al. Altered resting-state brain functional activities and networks in Crohn's disease: A systematic review[J/OL]. Front Neurosci, 2024, 18: 1319359 [2025-01-09]. https://doi.org/10.3389/fnins.2024.1319359. DOI: 10.3389/fnins.2024.1319359.
[3]
CHESTER M A, KEEFER L. Beyond depression and anxiety in inflammatory bowel diseases: forging a path toward emotional healing[J/OL]. Am J Gastroenterol, 2024 [2025-01-09]. https://doi.org/10.14309/ajg.0000000000003125. DOI: 10.14309/ajg.0000000000003125.
[4]
THOMANN A K, SCHMITGEN M M, STEPHAN J C, et al. Associations between brain morphology, inflammatory markers and symptoms of fatigue, depression or anxiety in active and remitted Crohn's disease[J/OL]. J Crohns Colitis, 2024: jjae078 [2025-01-09]. https://doi.org/10.1093/ecco-jcc/jjae078. DOI: 10.1093/ecco-jcc/jjae078.
[5]
JAYASOORIYA N, BLACKWELL J, SAXENA S, et al. Antidepressant medication use in inflammatory bowel disease: a nationally representative population-based study[J]. Aliment Pharmacol Ther, 2022, 55(10): 1330-1341. DOI: 10.1111/apt.16820.
[6]
BARBERIO B, ZAMANI M, BLACK C J, et al. Prevalence of symptoms of anxiety and depression in patients with inflammatory bowel disease: A systematic review and meta-analysis.[J]. Lancet Gastroenterol Hepatol, 2021, 6(5): 359-370. DOI: 10.1016/S2468-1253(21)00014-5.
[7]
JI Y, LI H, DAI G, et al. Systematic review and meta-analysis: Impact of depression on prognosis in inflammatory bowel disease[J]. J Gastroenterol Hepatol, 2024, 39(8): 1476-1488. DOI: 10.1111/jgh.16568.
[8]
LI L, MA J, XU J G, et al. Brain functional changes in patients with Crohn's disease: A resting-state fMRI study[J/OL]. Brain Behav, 2021, 11(8): e2243 [2025-01-09]. https://doi.org/10.1002/brb3.2243. DOI: 10.1002/brb3.2243.
[9]
FAIRBRASS K M, LOVATT J, BARBERIO B, et al. Bidirectional brain-gut axis effects influence mood and prognosis in IBD: A systematic review and meta-analysis[J]. Gut, 2022, 71(9): 1773-1780. DOI: 10.1136/gutjnl-2021-325985.
[10]
BISGAARD T H, ALLIN K H, ELMAHDI R, et al. The bidirectional risk of inflammatory bowel disease and anxiety or depression: a systematic review and meta-analysis[J]. Gen Hosp Psychiatry, 2023, 83: 109-116. DOI: 10.1016/j.genhosppsych.2023.05.002.
[11]
HU C, GE M, LIU Y, et al. From inflammation to depression: key biomarkers for IBD-related major depressive disorder[J/OL]. J Transl Med, 2024, 22(1): 997 [2025-01-09]. https://doi.org/10.1186/s12967-024-05758-8. DOI: 10.1186/s12967-024-05758-8.
[12]
GHIA J E, BLENNERHASSETT P, COLLINS S M. Impaired parasympathetic function increases susceptibility to inflammatory bowel disease in a mouse model of depression[J]. J Clin Invest, 2008, 118(6): 2209-2218. DOI: 10.1172/JCI32849.
[13]
BISGAARD T H, ALLIN K H, KEEFER L, et al. Depression and anxiety in inflammatory bowel disease: epidemiology, mechanisms and treatment[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(11): 717-726. DOI: 10.1038/s41575-022-00634-6.
[14]
ZHANG R N, WANG Y D, WANG H J, et al. Identification of neural alterations in patients with Crohn's disease with a novel multiparametric brain MRI-based radiomics model[J/OL]. Insights Imaging, 2024, 15: 289 [2025-01-09]. https://doi.org/10.1186/s13244-024-01859-6. DOI: 10.1186/s13244-024-01859-6.
[15]
TANG W L, LI K. Progress in MRI study of brain structure and functional alterations in patients with Crohn's disease[J]. Chin J Magn Reson Imaging, 2022, 13(8): 154-157. DOI: 10.12015/issn.1674-8034.2022.08.035.
[16]
TONG Y, WANG Q, WANG X, et al. A scoping review of functional near-infrared spectroscopy biomarkers in late-life depression: depressive symptoms, cognitive functioning, and social functioning[J/OL]. Psychiatry Res Neuroimaging, 2024, 341: 111810 [2025-01-09]. https://doi.org/10.1016/j.pscychresns.2024.111810. DOI: 10.1016/j.pscychresns.2024.111810.
[17]
DENG J, SUN J, LU S, et al. Exploring neural activity in inflammatory bowel diseases using functional connectivity and DKI-fMRI fusion[J/OL]. Behav Brain Res, 2023, 443: 114325 [2025-01-09]. https://doi.org/10.1016/j.bbr.2023.114325. DOI: 10.1016/j.bbr.2023.114325.
[18]
BAO C H, LIU P, LIU H R, et al. Alterations in brain grey matter structures in patients with Crohn's disease and their correlation with psychological distress[J]. J Crohns Colitis, 2015, 9(7): 532-540. DOI: 10.1093/ecco-jcc/jjv057.
[19]
KONG N, ZHOU F, ZHANG F, et al. Morphological and regional spontaneous functional aberrations in the brain associated with Crohn's disease: A systematic review and coordinate-based meta-analyses[J/OL]. Cereb Cortex, 2024, 34(4): bhae116 [2025-01-09]. https://doi.org/10.1093/cercor/bhae11. DOI: 10.1093/cercor/bhae116.
[20]
ZHENG Y L, LI Y F, HU Y, et al. Abnormal cortical thickness and functional connectivity of the left insula and right posterior parietal cortex in Crohn's disease[J]. Chin J Magn Reson Imaging, 2024, 15(6): 31-35. DOI: 10.12015/issn.1674-8034.2024.06.004.
[21]
LI P, CHEN F, CHEN D, et al. Evaluation of neostriatum changes in Crohn's disease: a multimodal brain magnetic resonance imaging study[J]. Quant Imaging Med Surg, 2024, 14(12): 8320-8330. DOI: 10.21037/qims-23-1603.
[22]
WANG J, LIU G, XU K, et al. The role of neurotransmitters in mediating the relationship between brain alterations and depressive symptoms in patients with inflammatory bowel disease[J]. Hum Brain Mapp, 2023, 44(16): 5357-5371. DOI: 10.1002/hbm.26439.
[23]
HUANG M, MA H, ZOU Y, et al. Structural alterations of brain in different disease states of Crohn's disease: Results of a cross-sectional study in a Chinese hospital[J/OL]. Heliyon, 2024, 10(6): e27446 [2025-01-09]. https://doi.org/10.1016/j.heliyon.2024.e27446. DOI: 10.1016/j.heliyon.2024.e27446.
[24]
GOODYEAR B G, HEIDARI F, INGRAM R J M, et al. Multimodal brain MRI of deep gray matter changes associated with inflammatory bowel disease[J]. Inflamm Bowel Dis, 2023, 29(3): 405-416. DOI: 10.1093/ibd/izac089.
[25]
ZHAO Q. Brain imaging derived phenotypes: a biomarker for the onset of inflammatory bowel disease and a potential mediator of mental complications[D]. Jilin University, 2024. DOI: 10.27162/d.cnki.gjlin.2024.004467.
[26]
METIN M Ö, GÖKÇAY D. Diffusion tensor imaging group analysis using tract profiling and directional statistics[J/OL]. Front Neurosci, 2021, 15: 625473 [2025-01-09]. https://doi.org/10.3389/fnins.2021.625473. DOI: 10.3389/fnins.2021.625473.
[27]
HOU J, DODD K, NAIR V A, et al. Alterations in brain white matter microstructural properties in patients with Crohn's disease in remission[J/OL]. Sci Rep, 2020, 10(1): 2145 [2025-01-09]. https://doi.org/10.1038/s41598-020-59098-w. DOI: 10.1038/s41598-020-59098-w.
[28]
TURKIEWICZ J, BHATT R R, WANG H, et al. Altered brain structural connectivity in patients with longstanding gut inflammation is correlated with psychological symptoms and disease duration[J/OL]. Neuroimage Clin, 2021, 30: 102613 [2025-01-09]. https://doi.org/10.1016/j.nicl.2021.102613. DOI: 10.1016/j.nicl.2021.102613.
[29]
YU J, XIE W, WANG P. Inflammatory bowel disease and white matter microstructure: A bidirectional mendelian randomization study[J/OL]. Brain Res, 2024, 1845: 149206 [2025-01-09]. https://doi.org/10.1016/j.brainres.2024.149206. DOI: 10.1016/j.brainres.2024.149206.
[30]
FILIP P, VOJTÍŠEK L, JIČÍNSKÁ A M, et al. Wide-spread brain alterations early after the onset of Crohn's disease in children in remission-a pilot study[J/OL]. Front Neurosci, 2024, 18: 1491770 [2025-01-09]. https://doi.org/10.3389/fnins.2024.1491770. DOI: 10.3389/fnins.2024.1491770.
[31]
KAMAGATA K, ANDICA C, KATO A, et al. Diffusion magnetic resonance imaging-based biomarkers for neurodegenerative diseases[J/OL]. Int J Mol Sci, 2021, 22(10): 5216 [2025-01-09]. https://doi.org/10.3390/ijms22105216. DOI: 10.3390/ijms22105216.
[32]
YANG J, TONG P, DONG L P, et al. A novel approach to investigate the mechanism of electroconvulsive therapy in the treatment of major depression disorder: diffusion kurtosis imaging[J]. J Psychiatr Res, 2024, 179: 372-378. DOI: 10.1016/j.jpsychires.2024.09.036.
[33]
WU K, LIU Y Y, SHAO S, et al. The microglial innate immune receptors TREM-1 and TREM-2 in the anterior cingulate cortex (ACC) drive visceral hypersensitivity and depressive-like behaviors following DSS-induced colitis[J]. Brain Behav Immun, 2023, 112: 96-117. DOI: 10.1016/j.bbi.2023.06.003.
[34]
YANG L, ZHANG L, LIU Y, et al. The different impacts of pain-related negative emotion and trait negative emotion on brain function in patients with inflammatory bowel disease[J/OL]. Sci Rep, 2024, 14(1): 23897 [2025-01-09]. https://doi.org/10.1038/s41598-024-75237-z. DOI: 10.1038/s41598-024-75237-z.
[35]
KONG N, GAO C, ZHANG F, et al. Neurophysiological effects of the anterior cingulate cortex on the exacerbation of Crohn's disease: A combined fMRI-MRS study[J/OL]. Front Neurosci, 2022, 16: 840149 [2025-01-09]. https://doi.org/10.3389/fnins.2022.840149. DOI: 10.3389/fnins.2022.840149.
[36]
HUANG M, MA G, ZOU Y, et al. A potential brain functional biomarker distinguishing patients with Crohn's disease with different disease stages: A resting-state fMRI study[J/OL]. Front Neurosci, 2024, 18: 1361320 [2025-01-09]. https://doi.org/10.3389/fnins.2024.1361320. DOI: 10.3389/fnins.2024.1361320.
[37]
HUANG M, LI X, FAN W, et al. Alterations of regional homogeneity in Crohn's disease with psychological disorders: A resting-state fMRI study[J/OL]. Front Neurol, 2022, 13: 817556 [2025-01-09]. https://doi.org/10.3389/fneur.2022.817556. DOI: 10.3389/fneur.2022.817556.
[38]
S Z, F C, J W, et al. Altered structural covariance and functional connectivity of the insula in patients with Crohn's disease[J]. Quant Imaging Med Surg, 2022, 12(2): 1020-1036. DOI: 10.21037/qims-21-509.
[39]
SUN J, SUN W, YUE K, et al. Abnormal amygdala subregion functional connectivity in patients with Crohn's disease with or without anxiety and depression[J/OL]. Behav Neurol, 2024, 2024: 1551807 [2025-01-09]. https://doi.org/10.1155/2024/1551807. DOI: 10.1155/2024/1551807.
[40]
THAPALIYA G, ELDEGHAIDY S, RADFORD S J, et al. An examination of resting-state functional connectivity in patients with active Crohn's disease[J/OL]. Front Neurosci, 2023, 17: 1265815 [2025-01-09]. https://doi.org/10.3389/fnins.2023.1265815. DOI: 10.3389/fnins.2023.1265815.
[41]
LI L, MA J, HUA X, et al. Altered intra- and inter-network functional connectivity in patients with Crohn's disease: An independent component analysis-based resting-state functional magnetic resonance imaging study[J/OL]. Front Neurosci, 2022, 16: 855470 [2025-01-09]. https://doi.org/10.3389/fnins.2022.855470. DOI: 10.3389/fnins.2022.855470.
[42]
THOMANN A K, GRIEBE M, THOMANN P A, et al. Intrinsic neural network dysfunction in quiescent Crohn's disease[J/OL]. Sci Rep, 2017, 7(1): 11579 [2025-01-09]. https://doi.org/10.1038/s41598-017-11792-y. DOI: 10.1038/s41598-017-11792-y.
[43]
HOU J, MOHANTY R, NAIR V A, et al. Alterations in resting-state functional connectivity in patients with Crohn's disease in remission[J/OL]. Sci Rep, 2019, 9(1): 7412 [2025-01-09]. https://doi.org/10.1038/s41598-019-43878-0. DOI: 10.1038/s41598-019-43878-0.
[44]
THOMANN A K, REINDL W, WÜSTENBERG T, et al. Aberrant brain structural large-scale connectome in Crohn's disease[J/OL]. Neurogastroenterol Motil, 2019, 31(6): e13593 [2025-01-09]. https://doi.org/10.1111/nmo.13593. DOI: 10.1111/nmo.13593.
[45]
LI Y, ZHENG Y, RONG L, et al. Altered function and structure of the cerebellum associated with gut-brain regulation in Crohn's disease: A structural and functional MRI study[J]. Cerebellum, 2024, 23(6): 2285-2296. DOI: 10.1007/s12311-024-01715-9.
[46]
GUO R, WU J, ZHENG Y, et al. Graph theory further revealed visual spatial working memory impairment in patients with inflammatory bowel disease[J]. J Inflamm Res, 2024, 17: 2811-2823. DOI: 10.2147/JIR.S462268.
[47]
AGOSTINI A, BALLOTTA D, RIGHI S, et al. Stress and brain functional changes in patients with Crohn's disease: A functional magnetic resonance imaging study[J]. Neurogastroenterol Motil, 2017, 29(10): 1-10. DOI: 10.1111/nmo.13108.
[48]
GRAY M A, CHAO C Y, STAUDACHER H M, et al. Anti-TNFα therapy in IBD alters brain activity reflecting visceral sensory function and cognitive-affective biases[J/OL]. PLoS One, 2018, 13(3): e0193542 [2025-01-09]. https://doi.org/10.1371/journal.pone.0193542. DOI: 10.1371/journal.pone.0193542.
[49]
SIEBENHÜNER A R, ROSSEL J B, SCHREINER P, et al. Effects of anti-TNF therapy and immunomodulators on anxiety and depressive symptoms in patients with inflammatory bowel disease: a 5-year analysis[J/OL]. Ther Adv Gastroenterol, 2021, 14: 17562848211033763 [2025-01-09]. https://doi.org/10.1177/17562848211033763. DOI: 10.1177/17562848211033763.
[50]
WU Y, QIAO S, ZHONG J, et al. FNIRS-based energy landscape analysis to signify brain activity dynamics of individuals with depression[J/OL]. CNS Neurosci Ther, 2024, 30(11): e70139 [2025-01-09]. https://doi.org/10.1111/cns.70139. DOI: 10.1111/cns.70139.
[51]
FUJIWARA T, KONO S, KATAKURA K, et al. Evaluation of brain activity using near-infrared spectroscopy in inflammatory bowel disease patients[J/OL]. Sci Rep, 2018, 8(1): 402 [2025-01-09]. https://doi.org/10.1038/s41598-017-18897-4. DOI: 10.1038/s41598-017-18897-4.
[52]
HOU M, ZHANG X, CHEN G, et al. Emotion recognition based on a EEG-fNIRS hybrid brain network in the source space[J/OL]. Brain Sci, 2024, 14(12): 1166 [2025-01-09]. https://doi.org/10.3390/brainsci14121166. DOI: 10.3390/brainsci14121166.
[53]
BONILAURI A, SANGIULIANO INTRA F, ROSSETTO F, et al. Whole-head functional near-infrared spectroscopy as an ecological monitoring tool for assessing cortical activity in parkinson's disease patients at different stages[J/OL]. Int J Mol Sci, 2022, 23(23): 14897 [2025-01-09]. https://doi.org/10.3390/ijms232314897. DOI: 10.3390/ijms232314897.

PREV Research progress on the correlation between multimodal MRI brain imaging and inflammatory markers in depression
NEXT Advances in imaging-transcriptomics association studies in neurodegenerative diseases
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn