Share:
Share this content in WeChat
X
Review
Advances in imaging-transcriptomics association studies in neurodegenerative diseases
JI Yi  LU Liujia  FANG Xiangming 

Cite this article as: JI Y, LU L J, FANG X M. Advances in imaging-transcriptomics association studies in neurodegenerative diseases[J]. Chin J Magn Reson Imaging, 2025, 16(4): 139-144. DOI:10.12015/issn.1674-8034.2025.04.022.


[Abstract] The application of multimodal MRI and other imaging techniques to detect brain phenotypic alterations in patients with neurodegenerative diseases has become pervasive in clinical diagnosis and scientific research. However, the genetic mechanisms underlying these brain phenotypic changes still remain unknown. In recent years, with the advent of brain-wide transcriptomics data (i.e., the Allen Human Brain Atlas), the field of imaging-transcriptomics association studies has emerged as a cross-disciplinary area aiming to bridge the gap between macroscopic neuroimaging phenotypes and microscopic molecular expression, which has achieved certain advancements. This review systematically summarizes the methodological framework of imaging transcriptome association studies and its latest advances in Alzheimer's disease, Parkinson's disease, Huntington's disease and other diseases, aiming to provide researchers with neurodegenerative disease researchers with theoretical tools for cross-scale research, and provide new perspectives for elucidating disease mechanisms and developing targeted therapy strategies.
[Keywords] neurodegenerative disease;imaging-transcriptomics association studies;Allen human brain atlas;multimodal magnetic resonance imaging;magnetic resonance imaging;gene expression

JI Yi   LU Liujia   FANG Xiangming*  

Department of Medical Imaging, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China

Corresponding author: FANG X M, E-mail: xiangming_fang@njmu.edu.cn

Conflicts of interest   None.

Received  2025-02-05
Accepted  2025-04-10
DOI: 10.12015/issn.1674-8034.2025.04.022
Cite this article as: JI Y, LU L J, FANG X M. Advances in imaging-transcriptomics association studies in neurodegenerative diseases[J]. Chin J Magn Reson Imaging, 2025, 16(4): 139-144. DOI:10.12015/issn.1674-8034.2025.04.022.

[1]
HAWRYLYCZ M J, LEIN E S, GUILLOZET-BONGAARTS A L, et al. An Anatomically Comprehensive Atlas of the Adult Human Brain Transcriptome[J]. Nature, 2012, 489: 391-399. DOI: 10.1038/nature11405.
[2]
FORNITO A, ARNATKEVIČIŪTĖ A, FULCHER B D. Bridging the Gap between Connectome and Transcriptome[J]. Trends Cogn Sci, 2019, 23: 34-50. DOI: 10.1016/j.tics.2018.10.005.
[3]
RODRIGUEZ SALGADO A M, ACOSTA I, KIM D J, et al. Prevalence and Impact of Neuropsychiatric Symptoms in Normal Aging and Neurodegenerative Syndromes: A Population-Based Study from Latin America[J]. Alzheimers Dement, 2023, 19: 5730-5741. DOI: 10.1002/alz.13384.
[4]
SUNDERLAND K M, BEATON D, ARNOTT S R, et al. Characteristics of the Ontario Neurodegenerative Disease Research Initiative Cohort[J]. Alzheimers Dement, 2023, 19: 226-243. DOI: 10.1002/alz.12632.
[5]
WEEMERING D N, BEELEN A, KLIEST T, et al. Trial Participation in Neurodegenerative Diseases: Barriers and Facilitators: A Systematic Review and Meta-Analysis[J/OL]. Neurology, 2024, 103: e209503 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/38830181. DOI: 10.1212/WNL.0000000000209503.
[6]
STORKEBAUM E, ROSENBLUM K, SONENBERG N. Messenger Rna Translation Defects in Neurodegenerative Diseases[J]. N Engl J Med, 2023, 388: 1015-1030. DOI: 10.1056/NEJMra2215795.
[7]
KAMPMANN M. Molecular and Cellular Mechanisms of Selective Vulnerability in Neurodegenerative Diseases[J]. Nat Rev Neurosci, 2024, 25: 351-371. DOI: 10.1038/s41583-024-00806-0.
[8]
ROBINSON J L, XIE S X, BAER D R, et al. Pathological Combinations in Neurodegenerative Disease Are Heterogeneous and Disease-Associated[J]. Brain, 2023, 146: 2557-2569. DOI: 10.1093/brain/awad059.
[9]
AGUZZI A, KAMPMANN M. Neurodegeneration Enters the Era of Functional Genomics[J/OL]. Science, 2023, 381: eadk5693 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/37676963. DOI: 10.1126/science.adk5693.
[10]
MARKELLO R D, ARNATKEVICIUTE A, POLINE J B, et al. Standardizing Workflows in Imaging Transcriptomics with the Abagen Toolbox[J/OL]. Elife, 2021, 10: e72129 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/34783653. DOI: 10.7554/eLife.72129.
[11]
MARKELLO R D, MISIC B. Comparing Spatial Null Models for Brain Maps[J/OL]. Neuroimage, 2021, 236: 118052 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/33857618. DOI: 10.1016/j.neuroimage.2021.118052.
[12]
CLOUGH E, BARRETT T, WILHITE S E, et al. Ncbi Geo: Archive for Gene Expression and Epigenomics Data Sets: 23-Year Update[J/OL]. Nucleic Acids Res, 2024, 52: D138-D144 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/37933855/. DOI: 10.1093/nar/gkad965.
[13]
MASON K, SATHE A, HESS P R, et al. Niche-De: Niche-Differential Gene Expression Analysis in Spatial Transcriptomics Data Identifies Context-Dependent Cell-Cell Interactions[J/OL]. Genome Biol, 2024, 25: 14 [2025-02-05]. https://genomebiology.biomedcentral.com/articles/10.1186/s13059-023-03159-6. DOI: 10.1186/s13059-023-03159-6.
[14]
LIU E, ZHANG Y, WANG J Z. Updates in Alzheimer's Disease: From Basic Research to Diagnosis and Therapies[J/OL]. Transl Neurodegener, 2024, 13: 45 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/39232848. DOI: 10.1186/s40035-024-00432-x.
[15]
XIONG X, JAMES B T, BOIX C A, et al. Epigenomic Dissection of Alzheimer's Disease Pinpoints Causal Variants and Reveals Epigenome Erosion[J/OL]. Cell, 2023, 186(20): 4422-4437.e21 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/37774680. DOI: 10.1016/j.cell.2023.08.040.
[16]
JIA J, NING Y, CHEN M, et al. Biomarker Changes During 20 Years Preceding Alzheimer's Disease[J]. N Engl J Med, 2024, 390: 712-722. DOI: 10.1056/NEJMoa2310168.
[17]
ZHANG Y, MA M, XIE Z, et al. Bridging the Gap between Morphometric Similarity Mapping and Gene Transcription in Alzheimer's Disease[J/OL]. Front Neurosci, 2021, 15: 731292 [2025-02-05]. https://www.frontiersin.org/articles/10.3389/fnins.2021.731292/full. DOI: 10.3389/fnins.2021.731292.
[18]
GROOT C, GROTHE M J, MUKHERJEE S, et al. Differential Patterns of Gray Matter Volumes and Associated Gene Expression Profiles in Cognitively-Defined Alzheimer's Disease Subgroups[J/OL]. Neuroimage Clin, 2021, 30:102660 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/33895633. DOI: 10.1016/j.nicl.2021.102660.
[19]
GODBERSEN G M, MURGAŠ M, GRYGLEWSKI G, et al. Coexpression of Gene Transcripts with Monoamine Oxidase a Quantified by Human in Vivo Positron Emission Tomography[J]. Cereb Cortex, 2022, 32: 3516-3524. DOI: 10.1093/cercor/bhab430.
[20]
GROTHE M J, SEPULCRE J, GONZALEZ-ESCAMILLA G, et al. Molecular Properties Underlying Regional Vulnerability to Alzheimer's Disease Pathology[J]. Brain, 2018, 141: 2755-2771. DOI: 10.1093/brain/awy189.
[21]
SEPULCRE J, GROTHE M J, D'OLEIRE UQUILLAS F, et al. Neurogenetic Contributions to Amyloid Beta and Tau Spreading in the Human Cortex[J]. Nat Med, 2018, 24: 1910-1918. DOI: 10.1038/s41591-018-0206-4.
[22]
YE F, FUNK Q, ROCKERS E, et al. In Alzheimer-Prone Brain Regions, Metabolism and Risk-Gene Expression Are Strongly Correlated[J/OL]. Brain Commun, 2022, 4: 216 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/36092303. DOI: 10.1093/braincomms/fcac216.
[23]
LANCOUR D, DUPUIS J, MAYEUX R, et al. Analysis of Brain Region-Specific Co-Expression Networks Reveals Clustering of Established and Novel Genes Associated with Alzheimer Disease[J/OL]. Alzheimers Res Ther, 2020, 12: 103 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/36092303. DOI: 10.1186/s13195-020-00674-7.
[24]
HÖGLINGER G U, ADLER C H, BERG D, et al. A Biological Classification of Parkinson's Disease: The Synneurge Research Diagnostic Criteria[J/OL]. Lancet Neurol, 2024, 23: 191-204 [2025-02-05]. https://doi.org/10.1038/s42003-020-0804-9. DOI: 10.1016/S1474-4422(23)00404-0.
[25]
MORRIS H R, SPILLANTINI M G, SUE C M, et al. The Pathogenesis of Parkinson's Disease[J]. Lancet, 2024, 403: 293-304. DOI: 10.1016/S0140-6736(23)01478-2.
[26]
ZARKALI A, THOMAS G E C, ZETTERBERG H, et al. Neuroimaging and Fluid Biomarkers in Parkinson's Disease in an Era of Targeted Interventions[J/OL]. Nat Commun, 2024, 15: 5661 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/38969680. DOI: 10.1038/s41467-024-49949-9.
[27]
YE H, ROBAK L A, YU M, et al. Genetics and Pathogenesis of Parkinson's Syndrome[J]. Annu Rev Pathol, 2023, 18: 95-121. DOI: 10.1146/annurev-pathmechdis-031521-034145.
[28]
LIM S Y, TAN A H, AHMAD-ANNUAR A, et al. Uncovering the Genetic Basis of Parkinson's Disease Globally: From Discoveries to the Clinic[J]. Lancet Neurol, 2024, 23: 1267-1280. DOI: 10.1016/S1474-4422(24)00378-8.
[29]
XIONG Y, YU J. Lrrk2 in Parkinson's Disease: Upstream Regulation and Therapeutic Targeting[J]. Trends Mol Med, 2024, 30: 982-996. DOI: 10.1016/j.molmed.2024.07.003.
[30]
WESTENBERGER A, SKRAHINA V, USNICH T, et al. Relevance of Genetic Testing in the Gene-Targeted Trial Era: The Rostock Parkinson's Disease Study[J]. Brain, 2024, 147: 2652-2667. DOI: 10.1093/brain/awae188.
[31]
KEO A, MAHFOUZ A, INGRASSIA A M T, et al. Transcriptomic Signatures of Brain Regional Vulnerability to Parkinson's Disease[J]. Communications Biology, 2020, 3: 101 [2025-02-05]. https://doi.org/10.1038/s42003-020-0804-9. DOI: 10.1038/s42003-020-0804-9.
[32]
THOMAS G E C, ZARKALI A, RYTEN M, et al. Regional Brain Iron and Gene Expression Provide Insights into Neurodegeneration in Parkinson's Disease[J]. Brain, 2021, 144: 1787-1798. DOI: 10.1093/brain/awab084.
[33]
BASAIA S, AGOSTA F, SARASSO E, et al. Brain Connectivity Networks Constructed Using Mri for Predicting Patterns of Atrophy Progression in Parkinson Disease[J/OL]. Radiology, 2024, 311: e232454 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/38916507. DOI: 10.1148/radiol.232454.
[34]
OH Y, KIM J S, LYOO C H, et al. Spatiotemporal Progression Patterns of Dopamine Availability and Deep Gray Matter Volume in Parkinson Disease-Related Cognitive Impairment[J/OL]. Neurology, 2024, 103: e209498 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/38885485. DOI: 10.1212/WNL.0000000000209498.
[35]
INGUANZO A, MOHANTY R, POULAKIS K, et al. Mri Subtypes in Parkinson's Disease across Diverse Populations and Clustering Approaches[J/OL]. NPJ Parkinsons Dis, 2024, 10: 159 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/39152153. DOI: 10.1038/s41531-024-00759-2.
[36]
KEO A, DZYUBACHYK O, VAN DER GROND J, et al. Cingulate Networks Associated with Gray Matter Loss in Parkinson's Disease Show High Expression of Cholinergic Genes in the Healthy Brain[J]. Eur J Neurosci, 2021, 53: 3727-3739. DOI: 10.1111/ejn.15216.
[37]
KEO A, DZYUBACHYK O, VAN DER GROND J, et al. Transcriptomic Signatures Associated with Regional Cortical Thickness Changes in Parkinson's Disease[J/OL]. Front Neurosci, 2021, 15: 733501 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/34658772. DOI: 10.3389/fnins.2021.733501.
[38]
ZARKALI A, MCCOLGAN P, RYTEN M, et al. Dementia Risk in Parkinson's Disease Is Associated with Interhemispheric Connectivity Loss and Determined by Regional Gene Expression[J/OL]. Neuroimage Clin, 2020, 28: 102470 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/33395965. DOI: 10.1016/j.nicl.2020.102470.
[39]
ZARKALI A, MCCOLGAN P, RYTEN M, et al. Differences in Network Controllability and Regional Gene Expression Underlie Hallucinations in Parkinson's Disease[J]. Brain, 2020, 143: 3435-3448. DOI: 10.1093/brain/awaa270.
[40]
DUAN W, URANI E, MATTSON M P. The Potential of Gene Editing for Huntington's Disease[J]. Trends Neurosci, 2023, 46: 365-376. DOI: 10.1016/j.tins.2023.02.005.
[41]
HERRERO-LORENZO M, PÉREZ-PÉREZ J, ESCARAMÍS G, et al. Small Rnas in Plasma Extracellular Vesicles Define Biomarkers of Premanifest Changes in Huntington's Disease[J/OL]. J Extracell Vesicles, 2024, 13: 12522 [2025-02-05]. DOI: 10.1002/jev2.12522.
[42]
GANGWANI M R, SOTO J S, JAMI-ALAHMADI Y, et al. Neuronal and Astrocytic Contributions to Huntington's Disease Dissected with Zinc Finger Protein Transcriptional Repressors[J/OL]. Cell Rep, 2023, 42: 111953 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/36640336. DOI: 10.1016/j.celrep.2022.111953.
[43]
ESTEVEZ-FRAGA C, ALTMANN A, PARKER C S, et al. Genetic Topography and Cortical Cell Loss in Huntington's Disease Link Development and Neurodegeneration[J]. Brain, 2023, 146: 4532-4546. DOI: 10.1093/brain/awad275.
[44]
MCCOLGAN P, GREGORY S, ZEUN P, et al. Neurofilament Light-Associated Connectivity in Young-Adult Huntington's Disease Is Related to Neuronal Genes[J]. Brain, 2022, 145: 3953-3967. DOI: 10.1093/brain/awac227.
[45]
MCCOLGAN P, GREGORY S, SEUNARINE K K, et al. Brain Regions Showing White Matter Loss In huntington's Disease Are Enriched for Synaptic and Metabolic Genes[J]. Biol Psychiatry, 2018, 83: 456-465. DOI: 10.1016/j.biopsych.2017.10.019.
[46]
KEO A, AZIZ N A, DZYUBACHYK O, et al. Co-Expression Patterns between Atn1 and Atxn2 Coincide with Brain Regions Affected in Huntington's Disease[J]. Front Mol Neurosci, 2017, 10: 399 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/29249939. DOI: 10.3389/fnmol.2017.00399.
[47]
ILIEVA H, VULLAGANTI M and KWAN J. Advances in Molecular Pathology, Diagnosis, and Treatment of Amyotrophic Lateral Sclerosis[J/OL]. BMJ, 2023, 383: 075037 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/37890889. DOI: 10.1136/bmj-2023-075037.
[48]
SEVIGNY J, USPENSKAYA O, HECKMAN L D, et al. Progranulin Aav Gene Therapy for Frontotemporal Dementia: Translational Studies and Phase 1/2 Trial Interim Results[J]. Nat Med, 2024, 30: 1406-1415. DOI: 10.1038/s41591-024-02973-0.
[49]
LI Y, DOU X, LIU J, et al. Globally Reduced N6-Methyladenosine (M6a) in C9orf72-Als/Ftd Dysregulates Rna Metabolism and Contributes to Neurodegeneration[J]. Nat Neurosci, 2023, 26: 1328-1338. DOI: 10.1038/s41593-023-01374-9.
[50]
BROCE I J, SIRKIS D W, NILLO R M, et al. C9orf72 Gene Networks in the Human Brain Correlate with Cortical Thickness in C9-Ftd and Implicate Vulnerable Cell Types[J/OL]. Front Neurosci, 2024, 18: 1258996 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/38469573. DOI: 10.3389/fnins.2024.1258996.

PREV Progress on multimodal imaging technology in the brains of Crohn,s disease patients with negative emotions
NEXT Research progress on multimodal MRI of cognitive impairment in type 2 diabetes mellitus
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn