Share:
Share this content in WeChat
X
Review
Research progress on multimodal MRI of cognitive impairment in type 2 diabetes mellitus
ZHAO Kaidi  CAO Xinshan 

Cite this article as: ZHAO K D, CAO X S. Research progress on multimodal MRI of cognitive impairment in type 2 diabetes mellitus[J]. Chin J Magn Reson Imaging, 2025, 16(4): 145-150. DOI:10.12015/issn.1674-8034.2025.04.023.


[Abstract] Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by insulin resistance and dysfunction of β cells.In recent years, studies on brain damage in T2DM patients have gradually increased, such as voxel-based morphometry, brain structural networks, arterial spin labeling, quantitative magnetization transfer imaging, neurovascular coupling, etc, in multimodal MRI, as well as the monitoring and analysis of T2DM patients with cognitive impairment in terms of artificial intelligence and gut microbiota in multimodal MR. These are emerging methods for predicting and evaluating brain damage in T2DM patients. This article summarizes the latest application progress of multimodal MRI in brain structure, cerebral perfusion, iron deposition, neurovascular coupling, artificial intelligence, and gut microbiota in T2DM patients, with the aim of revealing the neurophysiological mechanism, making more accurate judgments on the disease progression of patients, formulating the best treatment strategies for patients, improving the prognosis of patients, and providing reference directions for future research.
[Keywords] type 2 diabetes;cognitive impairment;multimodal magnetic resonance imaging;magnetic resonance imaging;artificial intelligence;gut microbiota microorganisms

ZHAO Kaidi   CAO Xinshan*  

Department of Radiology, Affiliated Hospital of Binzhou Medical University, Binzhou 256600, China

Corresponding author: CAO X S, E-mail: byfycxs@126.com

Conflicts of interest   None.

Received  2025-03-07
Accepted  2025-04-10
DOI: 10.12015/issn.1674-8034.2025.04.023
Cite this article as: ZHAO K D, CAO X S. Research progress on multimodal MRI of cognitive impairment in type 2 diabetes mellitus[J]. Chin J Magn Reson Imaging, 2025, 16(4): 145-150. DOI:10.12015/issn.1674-8034.2025.04.023.

[1]
CHEN Y, JIANG Q, XING X, et al. Clinical research progress on beta-cell dysfunction in T2DM development in the Chinese population[J]. Rev Endocr Metab Disord, 2025, 26(1): 31-53. DOI: 10.1007/s11154-024-09914-9.
[2]
SUN H, SAEEDI P, KARURANGA S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J/OL]. Diabetes Res Clin Pract, 2022, 183: 109119 [2025-03-02]. https://pubmed.ncbi.nlm.nih.gov/34879977/. DOI: 10.1016/j.diabres.2021.109119.
[3]
NANDA M, SHARMA R, MUBARIK S, et al. Type-2 Diabetes Mellitus (T2DM): Spatial-temporal Patterns of Incidence, Mortality and Attributable Risk Factors from 1990 to 2019 among 21 World Regions[J]. Endocrine, 2022, 77(3): 444-454. DOI: 10.1007/s12020-022-03125-5.
[4]
YU S, JIANG H, YU L, et al. DTI-ALPS index decreased in patients with Type 2 Diabetes Mellitus[J/OL]. Front Neurosci, 2024, 18: 1383780 [2025-03-02]. https://doi.org/10.3389/fnins.2024.1383780. DOI: 10.3389/fnins.2024.1383780.
[5]
CHENG L, LI W, CHEN Y, et al. Autophagy and Diabetic Encephalopathy: Mechanistic Insights and Potential Therapeutic Implications[J]. Aging Dis, 2022, 13(2): 447-457. DOI: 10.14336/AD.2021.0823.
[6]
WU J, FANG Y, TAN X, et al. Detecting type 2 diabetes mellitus cognitive impairment using whole-brain functional connectivity[J/OL]. Sci Rep, 2023, 13(1): 3940 [2025-03-02]. https://doi.org/10.1038/s41598-023-28163-5. DOI: 10.1038/s41598-023-28163-5.
[7]
FIORENZATO E, CAUZZO S, WEIS L, et al. Optimal MMSE and MoCA cutoffs for cognitive diagnoses in Parkinson's disease: A data-driven decision tree model[J/OL]. J Neurol Sci, 2024, 466: 123283 [2025-03-02]. https://doi.org/10.1016/j.jns.2024.123283. DOI: 10.1016/j.jns.2024.123283.
[8]
KHATIB N, HARCH I EL, LAMKADDEM A, et al. The Moroccan MoCA test: Translation, cultural adaptation, and validation[J]. Appl Neuropsychol Adult, 2024, 31(6): 1256-1260. DOI: 10.1080/23279095.2022.2119143.
[9]
DAI P, YU Y, SUN Q, et al. Abnormal changes of brain function and structure in patients with T2DM-related cognitive impairment: a neuroimaging meta-analysis and an independent validation[J/OL]. Nutr Diabetes, 2024, 14(1): 91 [2025-03-03]. https://doi.org/10.1038/s41387-024-00348-5. DOI: 10.1038/s41387-024-00348-5.
[10]
INUI S, KANEDA D, SAKURAI K, et al. Voxel-based Morphometry of Alzheimer's Disease Using a Localizer Image: A Comparative Study with Magnetization Prepared Rapid Acquisition with Gradient Echo[J]. Magn Reson Med Sci, 2025, 24(1): 103-111. DOI: 10.2463/mrms.mp.2023-0093.
[11]
TANG X, CHEN Y, TAN H, et al. Micro- and macro-changes in early-stage type 2 diabetes mellitus without cognitive impairment: a diffusion tensor imaging (DTI) and surface-based morphometry (SBM) study[J/OL]. Front Neurol, 2023, 14: 1115634 [2025-03-03]. https://doi.org/10.3389/fneur.2023.1115634. DOI: 10.3389/fneur.2023.1115634.
[12]
RONG J, WANG Y, LIU N, et al. Chronic stress induces insulin resistance and enhances cognitive impairment in AD[J/OL]. Brain Res Bull, 2024, 217: 111083 [2025-03-03]. https://doi.org/10.1016/j.brainresbull.2024.111083. DOI: 10.1016/j.brainresbull.2024.111083.
[13]
YANG C, ZHANG H, MA Z, et al. Structural and functional alterations of the hippocampal subfields in T2DM with mild cognitive impairment and insulin resistance: A prospective study[J/OL]. J Diabetes, 2024, 16(11): e70029 [2025-03-03]. https://doi.org/10.1111/1753-0407.70029. DOI: 10.1111/1753-0407.70029.
[14]
GAO Y, SUI C, CHEN B, et al. Voxel-based morphometry reveals the correlation between gray matter volume and serum P-tau-181 in type 2 diabetes mellitus patients with different HbA1c levels[J/OL]. Front Neurosci, 2023, 17: 1202374 [2025-03-03]. https://doi.org/10.3389/fnins.2023.1202374. DOI: 10.3389/fnins.2023.1202374.
[15]
SCHULTZ V, HEDDERICH D M, SCHMITZ-KOEP B, et al. Removing outliers from the normative database improves regional atrophy detection in single-subject voxel-based morphometry[J]. Neuroradiology, 2024, 66(4): 507-519. DOI: 10.1007/s00234-024-03304-3.
[16]
JIANG Y, LIU G, DENG B, et al. White matter lesions and DTI metrics related to various types of dysfunction in cerebral palsy: A meta-analysis and systematic review[J/OL]. PLoS One, 2025, 20(1): e312378 [2025-03-03]. https://doi.org/10.1371/journal.pone.0312378. DOI: 10.1371/journal.pone.0312378.
[17]
HU P, ZOU Y, ZHOU M, et al. Association of diffusion tensor imaging along the perivascular space index with cognitive impairment in type 2 diabetes mellitus[J]. Quant Imaging Med Surg, 2025, 15(2): 1491-1504. DOI: 10.21037/qims-24-1591.
[18]
CRIADO-MARRERO M, RAVI S, BHASKAR E, et al. Age dictates brain functional connectivity and axonal integrity following repetitive mild traumatic brain injuries in mice[J/OL]. Neuroimage, 2024, 298: 120764 [2025-03-03]. https://doi.org/10.1016/j.neuroimage.2024.120764. DOI: 10.1016/j.neuroimage.2024.120764.
[19]
JIN M, WANG L, WANG H, et al. Altered resting-state functional networks in patients with hemodialysis: a graph-theoretical based study[J]. Brain Imaging Behav, 2021, 15(2): 833-845. DOI: 10.1007/s11682-020-00293-8.
[20]
WANG M, CHENG X, SHI Q, et al. Brain diffusion tensor imaging reveals altered connections and networks in epilepsy patients[J/OL]. Front Hum Neurosci, 2023, 17: 1142408 [2025-03-03]. https://doi.org/10.3389/fnhum.2023.1142408. DOI: 10.3389/fnhum.2023.1142408.
[21]
LI J, ZHANG Q, WANG J, et al. Network efficiency of functional brain connectomes altered in type 2 diabetes patients with and without mild cognitive impairment[J/OL]. Diabetol Metab Syndr, 2024, 16(1): 247 [2025-03-03]. https://doi.org/10.1186/s13098-024-01484-9. DOI: 10.1186/s13098-024-01484-9.
[22]
XIONG Y, TIAN T, FAN Y, et al. Diffusion Tensor Imaging Reveals Altered Topological Efficiency of Structural Networks in Type-2 Diabetes Patients With and Without Mild Cognitive Impairment[J]. J Magn Reson Imaging, 2022, 55(3): 917-927. DOI: 10.1002/jmri.27884.
[23]
FALCON C, MONTESINOS P, VACLAVU L, et al. Time-encoded ASL reveals lower cerebral blood flow in the early AD continuum[J]. Alzheimers Dement, 2024, 20(8): 5183-5197. DOI: 10.1002/alz.14059.
[24]
MANNING P, SRINIVAS S, BOLAR D S, et al. Arterial spin labeled perfusion MRI for the assessment of radiation-treated meningiomas[J/OL]. Front Radiol, 2024, 4: 1345465 [2025-03-03]. https://doi.org/10.3389/fradi.2024.1345465. DOI: 10.3389/fradi.2024.1345465.
[25]
HAN X D, LI Y J, WANG P, et al. Insulin Resistance-Varying Associations of Adiposity Indices with Cerebral Perfusion in Older Adults: A Population-Based Study[J]. J Nutr Health Aging, 2023, 27(3): 219-227. DOI: 10.1007/s12603-023-1894-2.
[26]
LI M, LI Y, ZHAO K, et al. Abnormal cerebral blood flow and brain function in type 2 diabetes mellitus[J]. Endocrine, 2024, 85(1): 433-442. DOI: 10.1007/s12020-023-03342-6.
[27]
SHAO J, WANG J, HE Q, et al. Three-dimensional-arterial spin labeling perfusion correlation with diabetes-associated cognitive dysfunction and vascular endothelial growth factor in type 2 diabetes mellitus rat[J]. World J Diabetes, 2021, 12(4): 499-513. DOI: 10.4239/wjd.v12.i4.499.
[28]
GUAN X, LANCIONE M, AYTON S, et al. Neuroimaging of Parkinson's disease by quantitative susceptibility mapping[J/OL]. Neuroimage, 2024, 289: 120547 [2025-03-03]. https://doi.org/10.1016/j.neuroimage.2024.120547. DOI: 10.1016/j.neuroimage.2024.120547.
[29]
LI X, ZHANG W, LIU J N, et al. Correlation between cortical atrophy and cognitive function in pre-diabetes and type 2 diabetes mellitus[J]. Chin J Magn Reson Imaging, 2024, 15(4): 9-14. DOI: 10.12015/issn.1674-8034.2024.04.002.
[30]
LI W, GAO B, DU W, et al. Iron deposition heterogeneity in extrapyramidal system assessed by quantitative susceptibility mapping in Parkinson's disease patients with type 2 diabetes mellitus[J/OL]. Front Aging Neurosci, 2022, 14: 975390 [2025-03-03]. https://doi.org/10.3389/fnagi.2022.975390. DOI: 10.3389/fnagi.2022.975390.
[31]
SUI C, LI M, ZHANG Q, et al. Increased brain iron deposition in the basial ganglia is associated with cognitive and motor dysfunction in type 2 diabetes mellitus[J/OL]. Brain Res, 2025, 1846: 149263 [2025-03-04]. https://doi.org/10.1016/j.brainres.2024.149263. DOI: 10.1016/j.brainres.2024.149263.
[32]
SHEN S, LIAO Q, WONG Y K, et al. The role of melatonin in the treatment of type 2 diabetes mellitus and Alzheimer's disease[J]. Int J Biol Sci, 2022, 18(3): 983-994. DOI: 10.7150/ijbs.66871.
[33]
FUSHIMI Y, NAKAJIMA S, SAKATA A, et al. Value of Quantitative Susceptibility Mapping in Clinical Neuroradiology[J]. J Magn Reson Imaging, 2024, 59(6): 1914-1929. DOI: 10.1002/jmri.29010.
[34]
ZHAO Q, MAIMAITIAILI S, BI Y, et al. Brain Iron Deposition Alterations in Type 2 Diabetes Mellitus Patients With Mild Cognitive Impairment Based on Quantitative Susceptibility Mapping[J/OL]. J Diabetes, 2025, 17(1): e70052 [2025-03-04]. https://doi.org/10.1111/1753-0407.70052. DOI: 10.1111/1753-0407.70052.
[35]
HU R, GAO B, TIAN S, et al. Regional high iron deposition on quantitative susceptibility mapping correlates with cognitive decline in type 2 diabetes mellitus[J/OL]. Front Neurosci, 2023, 17: 1061156 [2025-03-04]. https://doi.org/10.3389/fnins.2023.1061156. DOI: 10.3389/fnins.2023.1061156.
[36]
WANG H, LIU X, SONG L, et al. Dysfunctional Coupling of Cerebral Blood Flow and Susceptibility Value in the Bilateral Hippocampus is Associated with Cognitive Decline in Nondialysis Patients with CKD[J]. J Am Soc Nephrol, 2023, 34(9): 1574-1588. DOI: 10.1681/ASN.0000000000000185.
[37]
SONG L, WANG H, YANG W, et al. Combination of rs-fMRI, QSM, and ASL Reveals the Cerebral Neurovascular Coupling Dysfunction Is Associated With Cognitive Decline in Patients With Chronic Kidney Disease[J/OL]. CNS Neurosci Ther, 2024, 30(12): e70151[2025-03-04]. https://doi.org/10.1111/cns.70151. DOI: 10.1111/cns.70151.
[38]
GONCALVES J S, SEICA R M, LARANJINHA J, et al. Impairment of neurovascular coupling in the hippocampus due to decreased nitric oxide bioavailability supports early cognitive dysfunction in type 2 diabetic rats[J]. Free Radic Biol Med, 2022, 193(Pt 2): 669-675. DOI: 10.1016/j.freeradbiomed.2022.11.009.
[39]
CANNA A, ESPOSITO F, TEDESCHI G, et al. Neurovascular coupling in patients with type 2 diabetes mellitus[J/OL]. Front Aging Neurosci, 2022, 14: 976340 [2025-03-04]. https://doi.org/10.3389/fnagi.2022.976340. DOI: 10.3389/fnagi.2022.976340.
[40]
NI M, LI Z, SUN Q, et al. Neurovascular decoupling measured with quantitative susceptibility mapping is associated with cognitive decline in patients with type 2 diabetes[J]. Cereb Cortex, 2023, 33(9): 5336-5346. DOI: 10.1093/cercor/bhac422.
[41]
YU K, HEALEY E, LEONG T, ET AL. Medical Artificial Intelligence and Human Values[J]. N Engl J Med, 2024, 390(20): 1895-1904. DOI: 10.1056/NEJMra2214183.
[42]
SCHLICK T, WEI G. Machine learning tools advance biophysics[J/OL]. Biophys J, 2024, 123(17): E1-E3 [2025-03-04]. https://pubmed.ncbi.nlm.nih.gov/39173628/. DOI: 10.1016/j.bpj.2024.07.036.
[43]
THEODORE ARMAND T P, NFOR K A, KIM J, et al. Applications of Artificial Intelligence, Machine Learning, and Deep Learning in Nutrition: A Systematic Review[J/OL]. Nutrients, 2024, 16(7): 1073 [2025-03-04]. https://doi.org/10.3390/nu16071073. DOI: 10.3390/nu16071073.
[44]
ANGGRENI N K I S, KRISTIANTO H, HANDAYANI D, et al. Artificial Intelligence for Diabetic Foot Screening Based on Digital Image Analysis: A Systematic Review[J/OL]. J Diabetes Sci Technol, 2025: 580926737 [2025-03-05]. https://doi.org/10.1177/19322968251317521. DOI: 10.1177/19322968251317521.
[45]
TAN X, WU J, MA X, et al. Convolutional Neural Networks for Classification of T2DM Cognitive Impairment Based on Whole Brain Structural Features[J/OL]. Front Neurosci, 2022, 16: 926486 [2025-03-05]. https://doi.org/10.3389/fnins.2022.926486. DOI: 10.3389/fnins.2022.926486.
[46]
LIU Y, XU X, ZHOU Y, et al. Coupling feature extraction method of resting state EEG Signals from amnestic mild cognitive impairment with type 2 diabetes mellitus based on weight permutation conditional mutual information[J]. Cogn Neurodyn, 2021, 15(6): 987-997. DOI: 10.1007/s11571-021-09682-1.
[47]
LIU W T, ZHANG X L. Research progress in MRI of microbiota-gut-brain axis dysbiosis[J]. Chin J Magn Reson Imaging, 2023, 14(2): 158-162. DOI: 10.12015/issn.1674-8034.2023.02.028.
[48]
ABURTO M R, CRYAN J F. Gastrointestinal and brain barriers: unlocking gates of communication across the microbiota-gut-brain axis[J]. Nat Rev Gastroenterol Hepatol, 2024, 21(4): 222-247. DOI: 10.1038/s41575-023-00890-0.
[49]
ZHANG S, WANG X, LIU S, et al. Phlorizin ameliorates cognitive and behavioral impairments via the microbiota-gut-brain axis in high-fat and high-fructose diet-induced obese male mice[J]. Brain Behav Immun, 2025, 123: 193-210. DOI: 10.1016/j.bbi.2024.09.008.
[50]
YAN S, WANG H, FENG B, et al. Causal relationship between gut microbiota and diabetic nephropathy: a two-sample Mendelian randomization study[J/OL]. Front Immunol, 2024, 15: 1332757 [2025-03-05]. https://doi.org/10.3389/fimmu.2024.1332757. DOI: 10.3389/fimmu.2024.1332757.
[51]
ZHU Z, CHEN Q, JIANG G, et al. The impact of gut microbial dysbiosis on the atrophy of the hippocampus and abnormal metabolism of N-acetyl aspartate in type 2 diabetic rats[J/OL]. Heliyon, 2024, 10(12): e33152 [2025-03-05]. https://doi.org/10.1016/j.heliyon.2024.e33152. DOI: 10.1016/j.heliyon.2024.e33152.
[52]
XU S, WANG X Y, YANG D, et al. The correlation between microstructural changes in the hypothalamus and mild cognitive impairment and short-chain fatty acids in the gut in T2DM patients[J]. Chin J Magn Reson Imaging, 2024, 15(1): 76-81. DOI: 10.12015/issn.1674-8034.2024.01.012.

PREV Advances in imaging-transcriptomics association studies in neurodegenerative diseases
NEXT Advances in brain MRI research of metabolic dysfunction-associated steatotic liver disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn