Share:
Share this content in WeChat
X
Review
Advances in brain MRI research of metabolic dysfunction-associated steatotic liver disease
FAN Wenxiao  WANG Yongxiang 

Cite this article as: FAN W X, WANG Y X. Advances in brain MRI research of metabolic dysfunction-associated steatotic liver disease[J]. Chin J Magn Reson Imaging, 2025, 16(4): 151-154, 167. DOI:10.12015/issn.1674-8034.2025.04.024.


[Abstract] As a hepatic manifestation of systemic metabolic disorders, metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as the most prevalent chronic liver disease. Previous studies have shown that MASLD may be associated with dementia and cognitive impairment. The brain structure and function abnormalities in MASLD patients can be observed by MRI to better explore the pathological mechanism of cognitive impairment in MASLD. This article reviews the advances in MRI studies on brain structure, function and cerebral perfusion in patients with MASLD, providing a neuroimaging foundation for exploring the mechanisms linking MASLD to dementia and optimizing therapeutic strategies for cognitive impairment in MASLD patients.
[Keywords] metabolic dysfunction-associated steatotic liver disease;metabolic dysfunction-associated steatohepatitis;magnetic resonance imaging;brain structure;diffusion tensor imaging;resting-state functional magnetic resonance imaging

FAN Wenxiao1   WANG Yongxiang1, 2*  

1 School of Nursing, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, China

2 Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China

Corresponding author: WANG Y X, E-mail: wang-yongxiang@hotmail.com

Conflicts of interest   None.

Received  2024-10-23
Accepted  2025-03-19
DOI: 10.12015/issn.1674-8034.2025.04.024
Cite this article as: FAN W X, WANG Y X. Advances in brain MRI research of metabolic dysfunction-associated steatotic liver disease[J]. Chin J Magn Reson Imaging, 2025, 16(4): 151-154, 167. DOI:10.12015/issn.1674-8034.2025.04.024.

[1]
ESLAM M, NEWSOME P N, SARIN S K, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement[J]. J Hepatol, 2020, 73(1): 202-209. DOI: 10.1016/j.jhep.2020.03.039.
[2]
YOUNOSSI Z M, GOLABI P, PAIK J M, et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review[J]. Hepatology, 2023, 77(4): 1335-1347. DOI: 10.1097/HEP.0000000000000004.
[3]
YOUNOSSI Z, TACKE F, ARRESE M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Hepatology, 2019, 69(6): 2672-2682. DOI: 10.1002/hep.30251.
[4]
SHANG Y, WIDMAN L, HAGSTRÖM H. Nonalcoholic fatty liver disease and risk of dementia: A population-based cohort study[J/OL]. Neurology, 2022, 99(6): e574-e582 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/35831178/. DOI: 10.1212/wnl.0000000000200853.
[5]
WANG Y X, LI Y J, LIU K K, et al. Nonalcoholic fatty liver disease, serum cytokines, and dementia among rural-dwelling older adults in China: A population-based study[J]. Eur J Neurol, 2022, 29(9): 2612-2621. DOI: 10.1111/ene.15416.
[6]
KIM G A, OH C H, KIM J W, et al. Association between non-alcoholic fatty liver disease and the risk of dementia: A nationwide cohort study[J]. Liver Int, 2022, 42(5): 1027-1036. DOI: 10.1111/liv.15244.
[7]
HAN W M, HIRANSUTHIKUL A, HOLROYD K B, et al. Impact of steatotic liver disease and non-alcoholic steatohepatitis on cognitive impairment in people living with HIV: A cross-sectional study[J]. HIV Med, 2023, 24(12): 1233-1243. DOI: 10.1111/hiv.13579.
[8]
WEINSTEIN G, DAVIS-PLOURDE K, HIMALI J J, et al. Non-alcoholic fatty liver disease, liver fibrosis score and cognitive function in middle-aged adults: The Framingham Study[J]. Liver Int, 2019, 39(9): 1713-1721. DOI: 10.1111/liv.14161.
[9]
SEO S W, GOTTESMAN R F, CLARK J M, et al. Nonalcoholic fatty liver disease is associated with cognitive function in adults[J]. Neurology, 2016, 86(12): 1136-1142. DOI: 10.1212/WNL.0000000000002498.
[10]
JACOBS S A H, GART E, VREEKEN D, et al. Sex-specific differences in fat storage, development of non-alcoholic fatty liver disease and brain structure in juvenile HFD-induced obese ldlr-/-.Leiden mice[J/OL]. Nutrients, 2019, 11(8): 1861 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/31405127/. DOI: 10.3390/nu11081861.
[11]
NUCERA S, RUGA S, CARDAMONE A, et al. MAFLD progression contributes to altered thalamus metabolism and brain structure[J/OL]. Sci Rep, 2022, 12(1): 1207 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/35075185/. DOI: 10.1038/s41598-022-05228-5.
[12]
YILMAZ P, ALFERINK L J M, CREMERS L G M, et al. Subclinical liver traits are associated with structural and hemodynamic brain imaging markers[J]. Liver Int, 2023, 43(6): 1256-1268. DOI: 10.1111/liv.15549.
[13]
WEINSTEIN G, ZELBER-SAGI S, PREIS S R, et al. Association of nonalcoholic fatty liver disease with lower brain volume in healthy middle-aged adults in the Framingham study[J]. JAMA Neurol, 2018, 75(1): 97-104. DOI: 10.1001/jamaneurol.2017.3229.
[14]
MIAO Y W, ZHANG B, SUN X T, et al. The presence and severity of NAFLD are associated with cognitive impairment and hippocampal damage[J]. J Clin Endocrinol Metab, 2023, 108(12): 3239-3249. DOI: 10.1210/clinem/dgad352.
[15]
WEINSTEIN G, O'DONNELL A, FRENZEL S, et al. Nonalcoholic fatty liver disease, liver fibrosis, and structural brain imaging: The Cross-Cohort Collaboration[J/OL]. Eur J Neurol, 2024, 31(1): e16048 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/37641505/. DOI: 10.1111/ene.16048.
[16]
BUSATTO G F, DINIZ B S, ZANETTI M V. Voxel-based morphometry in Alzheimer's disease[J]. Expert Rev Neurother, 2008, 8(11): 1691-1702. DOI: 10.1586/14737175.8.11.1691.
[17]
BASU E, MEHTA M, ZHANG C N, et al. Association of chronic liver disease with cognition and brain volumes in two randomized controlled trial populations[J/OL]. J Neurol Sci, 2022, 434: 120117 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/34959080/. DOI: 10.1016/j.jns.2021.120117.
[18]
KASPER P, MARTIN A, LANG S, et al. NAFLD and cardiovascular diseases: a clinical review[J]. Clin Res Cardiol, 2021, 110(7): 921-937. DOI: 10.1007/s00392-020-01709-7.
[19]
KIM D G, KRENZ A, TOUSSAINT L E, et al. Non-alcoholic fatty liver disease induces signs of Alzheimer's disease (AD) in wild-type mice and accelerates pathological signs of AD in an AD model[J/OL]. J Neuroinflammation, 2016, 13: 1 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/26728181/. DOI: 10.1186/s12974-015-0467-5.
[20]
CHENG Y, HE C Y, TIAN D Y, et al. Physiological β-amyloid clearance by the liver and its therapeutic potential for Alzheimer's disease[J]. Acta Neuropathol, 2023, 145(6): 717-731. DOI: 10.1007/s00401-023-02559-z.
[21]
JIANG S T, ZHANG J W, LIU Y G, et al. Unravelling the liver-brain connection: A two-sample mendelian randomization study investigating the causal relationship between NAFLD and cortical structure[J/OL]. Diabetes Res Clin Pract, 2023, 204: 110927 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/37778665/. DOI: 10.1016/j.diabres.2023.110927.
[22]
LIN Y K, CAI X R, CHEN J Z, et al. Non-alcoholic fatty liver disease causally affects the brain cortical structure: a Mendelian randomization study[J/OL]. Front Neurosci, 2023, 17: 1305624 [2025-03-11] https://pubmed.ncbi.nlm.nih.gov/38260009/. DOI: 10.3389/fnins.2023.1305624.
[23]
MAI Z L, MAO H. Causal effects of nonalcoholic fatty liver disease on cerebral cortical structure: a Mendelian randomization analysis[J/OL]. Front Endocrinol, 2023, 14: 1276576 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/38027213/. DOI: 10.3389/fendo.2023.1276576.
[24]
DE C HAMILTON A F, GRAFTON S T. Action outcomes are represented in human inferior frontoparietal cortex[J]. Cereb Cortex, 2008, 18(5): 1160-1168. DOI: 10.1093/cercor/bhm150.
[25]
LIAKAKIS G, NICKEL J, SEITZ R J. Diversity of the inferior frontal gyrus: a meta-analysis of neuroimaging studies[J]. Behav Brain Res, 2011, 225(1): 341-347. DOI: 10.1016/j.bbr.2011.06.022.
[26]
ADOLFI F, COUTO B, RICHTER F, et al. Convergence of interoception, emotion, and social cognition: A twofold fMRI meta-analysis and lesion approach[J]. Cortex, 2017, 88: 124-142. DOI: 10.1016/j.cortex.2016.12.019.
[27]
WARDLAW J M, SMITH E E, BIESSELS G J, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration[J]. Lancet Neurol, 2013, 12(8): 822-838. DOI: 10.1016/S1474-4422(13)70124-8.
[28]
GARNIER-CRUSSARD A, BOUGACHA S, WIRTH M, et al. White matter hyperintensity topography in Alzheimer's disease and links to cognition[J]. Alzheimers Dement, 2022, 18(3): 422-433. DOI: 10.1002/alz.12410.
[29]
JANG H, KANG D, CHANG Y, et al. Non-alcoholic fatty liver disease and cerebral small vessel disease in Korean cognitively normal individuals[J/OL]. Sci Rep, 2019, 9(1): 1814 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/30755685/. DOI: 10.1038/s41598-018-38357-x.
[30]
LU Y F, PIKE J R, HOOGEVEEN R, et al. Nonalcoholic fatty liver disease and longitudinal change in imaging and plasma biomarkers of Alzheimer disease and vascular pathology[J/OL]. Neurology, 2024, 102(7): e209203 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/38471046/. DOI: 10.1212/WNL.0000000000209203.
[31]
JEONG S M, KWON H, PARK S, et al. Favorable impact of non-alcoholic fatty liver disease on the cerebral white matter hyperintensity in a neurologically healthy population[J]. Eur J Neurol, 2019, 26(12): 1471-1478. DOI: 10.1111/ene.14029.
[32]
YANAI H, ADACHI H, HAKOSHIMA M, et al. Metabolic-dysfunction-associated steatotic liver disease-its pathophysiology, association with atherosclerosis and cardiovascular disease, and treatments[J/OL]. Int J Mol Sci, 2023, 24(20): 15473 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/37895151/. DOI: 10.3390/ijms242015473.
[33]
Catena C, BERNARDI S, SABATO N, et al. Ambulatory arterial stiffness indices and non-alcoholic fatty liver disease in essential hypertension[J]. Nutr Metab Cardiovasc Dis, 2013, 23(4): 389-393. DOI: 10.1016/j.numecd.2012.05.007.
[34]
ABOSHEAISHAA H, NASSAR M, ABDELHALIM O, et al. Relation between non-alcoholic fatty liver disease and carotid artery intimal media thickness as a surrogate for atherosclerosis: a systematic review and meta-analysis[J]. Eur J Gastroenterol Hepatol, 2024, 36(5): 592-607. DOI: 10.1097/MEG.0000000000002721.
[35]
MELLINGER J L, PENCINA K M, MASSARO J M, et al. Hepatic steatosis and cardiovascular disease outcomes: an analysis of the Framingham Heart Study[J]. J Hepatol, 2015, 63(2): 470-476. DOI: 10.1016/j.jhep.2015.02.045.
[36]
MLADENIĆ K, LENARTIĆ M, MARINOVIĆ S, et al. The "domino effect" in MASLD: the inflammatory cascade of steatohepatitis[J/OL]. Eur J Immunol, 2024, 54(4): 2149641 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/38314819/. DOI: 10.1002/eji.202149641.
[37]
TRIPODI A, LOMBARDI R, PRIMIGNANI M, et al. Hypercoagulability in patients with non-alcoholic fatty liver disease (NAFLD): causes and consequences[J/OL]. Biomedicines, 2022, 10(2): 249 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/35203457/. DOI: 10.3390/biomedicines10020249.
[38]
STOLS-GONÇALVES D, KEES HOVINGH G, NIEUWDORP M, et al. NAFLD and atherosclerosis: two sides of the same dysmetabolic coin?[J]. Trends Endocrinol Metab, 2019, 30(12): 891-902. DOI: 10.1016/j.tem.2019.08.008.
[39]
FIORENTINO T V, SUCCURRO E, SCIACQUA A, et al. Non-alcoholic fatty liver disease is associated with cardiovascular disease in subjects with different glucose tolerance[J/OL]. Diabetes Metab Res Rev, 2020, 36(8): e3333 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/32356922/. DOI: 10.1002/dmrr.3333.
[40]
NASIRI-ANSARI N, ANDROUTSAKOS T, FLESSA C M, et al. Endothelial cell dysfunction and nonalcoholic fatty liver disease (NAFLD): A concise review[J/OL]. Cells, 2022, 11(16): 2511 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/36010588/. DOI: 10.3390/cells11162511.
[41]
PARIKH N S, DUEKER N, VARELA D, et al. Association between PNPLA3 rs738409 G variant and MRI cerebrovascular disease biomarkers[J/OL]. J Neurol Sci, 2020, 416: 116981 [2025-03-11]. https://doi.org/10.1016/j.jns.2020.116981. DOI: 10.1016/j.jns.2020.116981.
[42]
WARBRICK T. Simultaneous EEG-fMRI: what have we learned and what does the future hold?[J/OL]. Sensors, 2022, 22(6): 2262 [2025-03-11]. https://doi.org/10.3390/s22062262. DOI: 10.3390/s22062262.
[43]
SCHRAMM S, BÖRNER C, REICHERT M, et al. Functional magnetic resonance imaging in migraine: A systematic review[J/OL]. Cephalalgia, 2023, 43(2): 3331024221128278 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/36751858/. DOI: 10.1177/03331024221128278.
[44]
ZHANG W D, CHEN Z H, WANG T T, et al. Research progress on the mechanism of central remodeling of cervical spondylosis based on functional magnetic resonance imaging[J]. Chin J Magn Reson Imag, 2023, 14(12): 166-171. DOI: 10.12015/issn.1674-8034.2023.12.030.
[45]
XU J L, GU J P, WANG L Y, et al. Aberrant spontaneous brain activity and its association with cognitive function in non-obese nonalcoholic fatty liver disease: A resting-state fMRI study[J/OL]. J Integr Neurosci, 2023, 22(1): 8 [2025-03-11]. https://doi.org/10.31083/j.jin2201008. DOI: 10.31083/j.jin2201008.
[46]
SHU K, YE X J, SONG J W, et al. Disruption of brain regional homogeneity and functional connectivity in male NAFLD: evidence from a pilot resting-state fMRI study[J/OL]. BMC Psychiatry, 2023, 23(1): 629 [2025-03-11]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10463794/. DOI: 10.1186/s12888-023-05071-6.
[47]
VANWAGNER L B, TERRY J G, CHOW L S, et al. Nonalcoholic fatty liver disease and measures of early brain health in middle-aged adults: The CARDIA study[J]. Obesity, 2017, 25(3): 642-651. DOI: 10.1002/oby.21767.
[48]
AIRAGHI L, RANGO M, MAIRA D, et al. Subclinical cerebrovascular disease in NAFLD without overt risk factors for atherosclerosis[J]. Atherosclerosis, 2018, 268: 27-31. DOI: 10.1016/j.atherosclerosis.2017.11.012.

PREV Research progress on multimodal MRI of cognitive impairment in type 2 diabetes mellitus
NEXT The research progress of radiomics and pathomics in glioma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn