Share:
Share this content in WeChat
X
Review
The research progress of radiomics and pathomics in glioma
WANG Juan  ZHANG Hui 

Cite this article as: WANG J, ZHANG H. The research progress of radiomics and pathomics in glioma[J]. Chin J Magn Reson Imaging, 2025, 16(4): 155-160. DOI:10.12015/issn.1674-8034.2025.04.025.


[Abstract] Glioma is the most common primary malignant brain tumor with high incidence and poor prognosis. Preoperative prediction of glioma grading, molecular typing, tumor microenvironment and prognosis is of significant clinical importance for making personalized treatment decisions. The technological advancements in radiomics and pathomics are reshaping the approaches for glioma diagnosis and prognosis evaluation. Radiomics involves the quantification and analysis of high-dimensional features from imaging data, while pathomics extracts microscopic pathological features from tissue slide images. The combination of these two approaches enables non-invasive and precise tumor assessment. This review summarizes the research progress of radiomics and pathomics in glioma, aiming to provide accurate diagnosis, treatment, and individualized management for glioma patients.
[Keywords] glioma;radiomics;pathomics;magnetic resonance imaging;molecular subtyping;tumor microenvironment

WANG Juan1   ZHANG Hui2*  

1 College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

2 Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China

Corresponding author: ZHANG H, E-mail: zhanghui_mr@163.com

Conflicts of interest   None.

Received  2024-12-07
Accepted  2025-04-10
DOI: 10.12015/issn.1674-8034.2025.04.025
Cite this article as: WANG J, ZHANG H. The research progress of radiomics and pathomics in glioma[J]. Chin J Magn Reson Imaging, 2025, 16(4): 155-160. DOI:10.12015/issn.1674-8034.2025.04.025.

[1]
OSTROM Q T, PRICE M, NEFF C, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2016-2020[J/OL]. Neuro Oncol, 2023, 25(12Suppl 2): iv1-iv99 [2024-12-07]. https://doi.org/10.1093/neuonc/noad149. DOI: 10.1093/neuonc/noad149.
[2]
WEN P Y, PACKER R J. The 2021 WHO Classification of Tumors of the Central Nervous System: clinical implications[J]. Neuro Oncol, 2021, 23(8): 1215-1217. DOI: 10.1093/neuonc/noab120.
[3]
TAN A C, ASHLEY D M, LÓPEZ G Y, et al. Management of glioblastoma: State of the art and future directions[J]. CA Cancer J Clin, 2020, 70(4): 299-312. DOI: 10.3322/CAAC.21613.
[4]
BERGER T R, WEN P Y, LANG-ORSINI M, et al. World Health Organization 2021 Classification of Central Nervous System Tumors and Implications for Therapy for Adult-Type Gliomas: A Review[J]. JAMA Oncol, 2022, 8(10): 1493-1501. DOI: 10.1001/jamaoncol.2022.2844.
[5]
HÖLSCHER D L, BOUTELDJA N, JOODAKI M, et al. Next-Generation Morphometry for pathomics-data mining in histopathology[J/OL]. Nat Commun, 2023, 14(1): 470 [2024-12-07]. https://doi.org/10.1038/s41467-023-36173-0. DOI: 10.1038/s41467-023-36173-0.
[6]
BÜLOW R D, HÖLSCHER D L, COSTA I G, et al. Extending the landscape of omics technologies by pathomics[J/OL]. NPJ Syst Biol Appl, 2023, 9(1): 38 [2024-12-07]. https://doi.org/10.1038/s41540-023-00301-9. DOI: 10.1038/s41540-023-00301-9.
[7]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[8]
NOUGARET S, TIBERMACINE H, TARDIEU M, et al. Radiomics: an Introductory Guide to What It May Foretell[J/OL]. Curr Oncol Rep, 2019, 21(8): 70 [2024-12-07]. https://doi.org/10.1007/s11912-019-0815-1. DOI: 10.1007/s11912-019-0815-1.
[9]
NAKAMOTO T, TAKAHASHI W, HAGA A, et al. Publisher Correction: Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic resonance images based on a radiomic analysis[J/OL]. Sci Rep, 2020, 10(1): 3073 [2024-12-07]. https://doi.org/10.1038/s41598-020-60086-3. DOI: 10.1038/s41598-020-60086-3.
[10]
TAN R, SUI C, WANG C, et al. MRI-based intratumoral and peritumoral radiomics for preoperative prediction of glioma grade: a multicenter study[J/OL].Front Oncol, 2024, 14: 1401977 [2024-12-07]. https://doi.org/10.3389/fonc.2024.1401977. DOI: 10.3389/fonc.2024.1401977.
[11]
LIN K, CIDAN W, QI Y, et al. Glioma grading prediction using multiparametric magnetic resonance imaging-based radiomics combined with proton magnetic resonance spectroscopy and diffusion tensor imaging[J]. Med Phys, 2022, 49(7): 4419-4429. DOI: 10.1002/mp.15648.
[12]
ZHUGE Y, NING H, MATHEN P, et al. Automated glioma grading on conventional MRI images using deep convolutional neural networks[J]. Med Phys, 2020, 47(7): 3044-3053. DOI: 10.1002/mp.14168.
[13]
RATHORE S, NIAZI T, IFTIKHAR M A, et al. Glioma Grading via Analysis of Digital Pathology Images Using Machine Learning[J/OL]. Cancers, 2020, 12(3): 578 [2024-12-07]. https://doi.org/10.3390/cancers12030578. DOI: 10.3390/cancers12030578.
[14]
MIZOGUCHI M, HATA N, KUGA D, et al. Clinical implications of molecular analysis in diffuse glioma stratification[J]. Brain Tumor Pathol, 2021, 38(3): 210-217. https://doi.org/10.1007/s10014-021-00409-y. DOI: 10.1007/s10014-021-00409-y.
[15]
GRITSCH S, BATCHELOR T T, GONZALEZ CASTRO L N. Diagnostic, therapeutic, and prognostic implications of the 2021 World Health Organization classification of tumors of the central nervous system[J]. Cancer, 2022, 128(1): 47-58. DOI: 10.1002/cncr.33918.
[16]
CHOWDHURY R, YEOH K K, TIAN Y M, et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases[J]. EMBO Rep, 2011, 12(5): 463-469. DOI: 10.1038/embor.2011.43.
[17]
YAN H, PARSONS D W, JIN G, et al. IDH1 and IDH2 mutations in gliomas[J]. N Engl J Med, 2009, 360(8): 765-773. DOI: 10.1056/NEJMoa0808710.
[18]
HARTMANN C, HENTSCHEL B, WICK W, et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas[J]. Acta Neuropathol, 2010, 120(6): 707-718. DOI: 10.1007/s00401-010-0781-z.
[19]
LIANG Y, LIU W, BAI D, et al. The value of multiparametric MRI radiomics in predicting IDH genotype in glioma before surgery[J/OL].Front Oncol, 2023, 13: 1265672 [2024-12-07]. https://doi.org/10.3389/fonc.2023.1265672. DOI: 10.3389/fonc.2023.1265672.
[20]
WANG J, HU Y, ZHOU X, et al. A radiomics model based on DCE-MRI and DWI may improve the prediction of estimating IDH1 mutation and angiogenesis in gliomas[J/OL]. Eur J Radiol, 2022, 147: 110141 [2024-12-07]. https://doi.org/10.1016/j.ejrad.2021.110141. DOI: 10.1016/j.ejrad.2021.110141.
[21]
SHI N, XU Q, ZHANG C, et al. Prediction of glioma IDH protein expression by convolutional recurrent neural network based on MR images[J]. J Med Imaging, 2023, 33(10): 1745-1749. DOI: 1006-9011(2023)10-1745-05.
[22]
LIU S, SHAH Z, SAV A, et al. Isocitrate dehydrogenase (IDH) status prediction in histopathology images of gliomas using deep learning[J/OL]. Sci Rep, 2020, 10(1): 7733 [2024-12-07]. https://doi.org/10.1038/s41598-020-64588-y. DOI: 10.1038/s41598-020-64588-y.
[23]
LIECHTY B, XU Z, ZHANG Z, et al. Machine learning can aid in prediction of IDH mutation from H&E-stained histology slides in infiltrating gliomas[J/OL]. Sci Rep, 2022, 12(1): 22623 [2024-12-07]. https://doi.org/10.1038/s41598-022-26170-6. DOI: 10.1038/s41598-022-26170-6.
[24]
LUO S, ZHU S, LIAO J, et al. IDH clonal heterogeneity segregates a subgroup of non-1p/19q codeleted gliomas with unfavourable clinical outcome[J]. Neuropathol Appl Neurobiol, 2021, 47(3): 394-405. DOI: 10.1111/nan.12671.
[25]
KACIMI S E O, DEHAIS C, FEUVRET L, et al. Survival Outcomes Associated With First-Line Procarbazine, CCNU, and Vincristine or Temozolomide in Combination With Radiotherapy in IDH-Mutant 1p/19q-Codeleted Grade 3 Oligodendroglioma[J/OL]. J Clin Oncol, 2024: Jco2400049 [2024-12-07]. https://doi.org/10.1200/JCO.24.00049. DOI: 10.1200/JCO.24.00049.
[26]
MA A, YAN X, QU Y, et al. Amide proton transfer weighted and diffusion weighted imaging based radiomics classification algorithm for predicting 1p/19q co-deletion status in low grade gliomas[J/OL]. BMC Med Imaging, 2024, 24(1): 85 [2024-12-07]. https://doi.org/10.1186/s12880-024-01262-z. DOI: 10.1186/s12880-024-01262-z.
[27]
CASALE R, LAVROVA E, SANDULEANU S, et al. Development and external validation of a non-invasive molecular status predictor of chromosome 1p/19q co-deletion based on MRI radiomics analysis of Low Grade Glioma patients[J/OL]. Eur J Radiol, 2021, 139: 109678 [2024-12-07]. https://doi.org/10.1016/j.ejrad.2021.109678. DOI: 10.1016/j.ejrad.2021.109678.
[28]
KIM G J, LEE T, AHN S, et al. Efficient diagnosis of IDH-mutant gliomas: 1p/19qNET assesses 1p/19q codeletion status using weakly-supervised learning[J/OL]. NPJ Precis Oncol, 2023, 7(1): 94 [2024-12-07]. https://doi.org/10.1038/s41698-023-00450-4. DOI: 10.1038/s41698-023-00450-4.
[29]
BUTLER M, PONGOR L, SU Y T, et al. MGMT Status as a Clinical Biomarker in Glioblastoma[J]. Trends Cancer, 2020, 6(5): 380-391. DOI: 10.1016/j.trecan.2020.02.010.
[30]
POON M T C, KENI S, VIMALAN V, et al. Extent of MGMT promoter methylation modifies the effect of temozolomide on overall survival in patients with glioblastoma: a regional cohort study[J/OL]. Neurooncol Adv, 2021, 3(1): vdab171 [2024-12-07]. https://doi.org/10.1093/noajnl/vdab171. DOI: 10.1093/noajnl/vdab171.
[31]
DO D T, YANG M-R, LAM L H T, et al. Improving MGMT methylation status prediction of glioblastoma through optimizing radiomics features using genetic algorithm-based machine learning approach[J/OL]. Sci Rep, 2022, 12(1): 13412 [2024-12-07]. https://doi.org/10.1038/s41598-022-17707-w. DOI: 10.1038/s41598-022-17707-w.
[32]
DONISELLI F M, PASCUZZO R, AGRÒ M, et al. Development of A Radiomic Model for MGMT Promoter Methylation Detection in Glioblastoma Using Conventional MRI[J/OL]. Int J Mol Sci, 2023, 25(1): 138 [2024-12-07]. https://doi.org/10.3390/ijms25010138. DOI: 10.3390/ijms25010138.
[33]
CHEN S, XU Y, YE M, et al. Predicting MGMT Promoter Methylation in Diffuse Gliomas Using Deep Learning with Radiomics[J/OL]. J Clin Med, 2022, 11(12): 3445 [2024-12-07]. https://doi.org/10.3390/jcm11123445. DOI: 10.3390/jcm11123445.
[34]
CHEN X H, ZHANG R D, ZHOU Y S, et al. Multi-sequence MRI-based convolutional neural network predicts the methylation status of MGMT promoter in glioma[J]. Chin J Magn Reson Imaging, 2023, 14(8): 34-39, 78. DOI: 10.12015/issn.1674-8034.2023.08.005.
[35]
HE Y, DUAN L, DONG G, et al. Computational pathology-based weakly supervised prediction model for MGMT promoter methylation status in glioblastoma[J/OL]. Front Neurol, 2024, 15: 1345687 [2024-12-07]. https://doi.org/10.3389/fneur.2024.1345687. DOI: 10.3389/fneur.2024.1345687.
[36]
LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251. DOI: 10.1093/neuonc/noab106.
[37]
PEKMEZCI M, RICE T, MOLINARO A M, et al. Adult infiltrating gliomas with WHO 2016 integrated diagnosis: additional prognostic roles of ATRX and TERT[J]. Acta Neuropathol, 2017, 133(6): 1001-1016. DOI: 10.1007/s00401-017-1690-1.
[38]
OHBA S, KUWAHARA K, YAMADA S, et al. Correlation between IDH, ATRX, and TERT promoter mutations in glioma[J]. Brain Tumor Pathol, 2020, 37(2): 33-40. DOI: 10.1007/s10014-020-00360-4.
[39]
CHEN L, CHEN R, LI T, et al. MRI radiomics model for predicting TERT promoter mutation status in glioblastoma[J/OL]. Brain Behav, 2023, 13(12): e3324 [2024-12-07]. https://doi.org/10.1002/brb3.3324. DOI: 10.1002/brb3.3324.
[40]
WANG H, ZHANG S, XING X, et al. Radiomic study on preoperative multi-modal magnetic resonance images identifies IDH-mutant TERT promoter-mutant gliomas[J]. Cancer Med, 2023, 12(3): 2524-2537. DOI: 10.1002/cam4.5097.
[41]
RODRIGUEZ S M B, KAMEL A, CIUBOTARU G V, et al. An Overview of EGFR Mechanisms and Their Implications in Targeted Therapies for Glioblastoma[J/OL]. Int J Mol Sci, 2023, 24(13): 11110 [2024-12-07]. https://doi.org/10.3390/ijms241311110. DOI: 10.3390/ijms241311110.
[42]
OPRITA A, BALOI S C, STAICU G A, et al. Updated Insights on EGFR Signaling Pathways in Glioma[J/OL]. Int J Mol Sci, 2021, 22(2): 587 [2024-12-07]. https://doi.org/10.3390/ijms22020587. DOI: 10.3390/ijms22020587.
[43]
SOHN B, PARK K, AHN S S, et al. Dynamic contrast-enhanced MRI radiomics model predicts epidermal growth factor receptor amplification in glioblastoma, IDH-wildtype[J]. J Neurooncol, 2023, 164(2): 341-351. DOI: 10.1007/s11060-023-04435-y.
[44]
FORTIN ENSIGN S P, JENKINS R B, GIANNINI C, et al. Translational significance of CDKN2A/B homozygous deletion in isocitrate dehydrogenase-mutant astrocytoma[J]. Neuro Oncol, 2023, 25(1): 28-36. DOI: 10.1093/neuonc/noac205.
[45]
YANG H, ZHU Z, LONG C, et al. Quantitative and Qualitative Parameters of DCE-MRI Predict CDKN2A/B Homozygous Deletion in Gliomas[J]. Acad Radiol, 2024, 31(8): 3355-3365. DOI: 10.1016/j.acra.2024.02.017.
[46]
GAO J, LIU Z, PAN H, et al. Preoperative Discrimination of CDKN2A/B Homozygous Deletion Status in Isocitrate Dehydrogenase-Mutant Astrocytoma: A Deep Learning-Based Radiomics Model Using MRI[J]. J Magn Reson Imaging, 2024, 59(5): 1655-1664. DOI: 10.1002/jmri.28945.
[47]
HU L S, NING S, ESCHBACHER J M, et al. Radiogenomics to characterize regional genetic heterogeneity in glioblastoma[J]. Neuro Oncol, 2017, 19(1): 128-137. DOI: 10.1093/neuonc/now135.
[48]
DELGADO-LÓPEZ P D, CORRALES-GARCÍA E M. Survival in glioblastoma: a review on the impact of treatment modalities[J]. Clin Transl Oncol, 2016, 18(11): 1062-1071. DOI: 10.1007/s12094-016-1497-x.
[49]
LI G, LI L, LI Y, et al. An MRI radiomics approach to predict survival and tumour-infiltrating macrophages in gliomas[J]. Brain, 2022, 145(3): 1151-1161. DOI: 10.1093/brain/awab340.
[50]
PARK C J, KIM S, HAN K, et al. Diffusion- and Perfusion-Weighted MRI Radiomics for Survival Prediction in Patients with Lower-Grade Gliomas[J]. Yonsei Med J, 2024, 65(5): 283-292. DOI: 10.3349/ymj.2023.0323.
[51]
DU P, YANG X, SHEN L, et al. Nomogram Model for Predicting the Prognosis of High-Grade Glioma in Adults Receiving Standard Treatment: A Retrospective Cohort Study[J/OL]. J Clin Med, 2022, 12(1): 196 [2024-12-07]. https://doi.org/10.3390/jcm12010196. DOI: 10.3390/jcm12010196.
[52]
STEYAERT S, QIU Y L, ZHENG Y, et al. Multimodal deep learning to predict prognosis in adult and pediatric brain tumors[J/OL]. Commun Med (Lond), 2023, 3(1): 44 [2024-12-07]. https://doi.org/10.1038/s43856-023-00276-y. DOI: 10.1038/s43856-023-00276-y.
[53]
LUO C, YANG J, LIU Z, et al. Corrigendum:Predicting the recurrence and overall survival of patients with glioma based on histopathological images using deep learning[J/OL]. Front Neurol, 2023, 14: 1209701 [2024-12-07]. https://doi.org/10.3389/fneur.2023.1209701. DOI: 10.3389/fneur.2023.1209701.
[54]
JAYARAM M A, PHILLIPS J J. Role of the Microenvironment in Glioma Pathogenesis[J]. Annu Rev Pathol, 2024, 19: 181-201. DOI: 10.1146/annurev-pathmechdis-051122-110348.
[55]
XU C, XIAO M, LI X, et al. Origin, activation, and targeted therapy of glioma-associated macrophages[J/OL]. Front Immunol, 2022, 13: 974996 [2024-12-07]. https://doi.org/10.3389/fimmu.2022.974996. DOI: 10.3389/fimmu.2022.974996.
[56]
ERICES J I, BIZAMA C, NIECHI I, et al. Glioblastoma Microenvironment and Invasiveness: New Insights and Therapeutic Targets[J/OL]. Int J Mol Sci, 2023, 24(8): 7047 [2024-12-07]. https://doi.org/10.3390/ijms24087047. DOI: 10.3390/ijms24087047.
[57]
ZHANG Q, WANG J, ZHANG J, et al. Potential functions and therapeutic implications of glioma-resident mesenchymal stem cells[J]. Cell Biol Toxicol, 2023, 39(3): 853-866. DOI: 10.1007/s10565-023-09808-7.
[58]
FAN X, LI J, HUANG B, et al. Noninvasive radiomics model reveals macrophage infiltration in glioma[J/OL]. Cancer Lett, 2023, 573: 216380 [2024-12-07]. https://doi.org/10.1016/j.canlet.2023.216380. DOI: 10.1016/j.canlet.2023.216380.
[59]
CHEN D, ZHANG R, HUANG X, et al. MRI-derived radiomics assessing tumor-infiltrating macrophages enable prediction of immune-phenotype, immunotherapy response and survival in glioma[J/OL]. Biomark Res, 2024, 12(1): 14 [2024-12-07]. https://doi.org/10.1186/s40364-024-00560-6. DOI: 10.1186/s40364-024-00560-6.
[60]
SUN C, JIANG C, WANG X, et al. MR-Based Radiomics Predicts CDK6 Expression and Prognostic Value in High-grade Glioma[J]. Acad Radiol, 2024, 31(12): 5141-5153. DOI: 10.1016/j.acra.2024.06.006.
[61]
WU Z, YANG Y, CHEN M, et al. Matrix metalloproteinase 9 expression and glioblastoma survival prediction using machine learning on digital pathological images[J/OL]. Sci Rep, 2024, 14(1): 15065 [2024-12-07]. https://doi.org/10.1038/s41598-024-66105-x. DOI: 10.1038/s41598-024-66105-x.

PREV Advances in brain MRI research of metabolic dysfunction-associated steatotic liver disease
NEXT Advances in functional magnetic resonance imaging in carotid artery stenosis and associated cognitive impairment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn