Share:
Share this content in WeChat
X
Review
Advances in functional magnetic resonance imaging in carotid artery stenosis and associated cognitive impairment
GAO Jiawen  ZHENG Ning  SHAO Shuo 

Cite this article as: GAO J W, ZHENG N, SHAO S. Advances in functional magnetic resonance imaging in carotid artery stenosis and associated cognitive impairment[J]. Chin J Magn Reson Imaging, 2025, 16(4): 161-167. DOI:10.12015/issn.1674-8034.2025.04.026.


[Abstract] Carotid artery stenosis (CAS) is a common vascular disease, which is not only closely related to the occurrence of ischaemic stroke, but also significantly associated with cognitive dysfunction, which seriously affects the quality of life of patients. Asymptomatic carotid stenosis (ACS) is carotid artery disease that has not yet resulted in a transient ischemic attack (TIA), ischemic stroke, or dementia. Even in asymptomatic patients with CAS, it can lead to significant cognitive dysfunction. In order to prevent further progression towards dementia, there is an urgent need to study the relationship between CAS and cognition. With the development of modern brain imaging technology, functional magnetic resonance imaging (fMRI) technology is able to sensitively detect abnormalities in brain tissue perfusion, structure and function, provided key imaging evidence to elucidate the mechanisms of CAS-related cognitive impairment. The purpose of this article is to review the latest research progress of fMRI technology in carotid artery stenosis and related cognitive impairment in recent years, in anticipation of providing new ideas for the assessment and diagnosis of CAS.
[Keywords] carotid stenosis;cognitive dysfunction;magnetic resonance imaging;brain function;functional connection

GAO Jiawen1   ZHENG Ning2, 3   SHAO Shuo2, 3*  

1 School of Medical Imaging, Shandong Second Medical University, Weifang 261053, China

2 Department of Radiology, Jining First People's Hospital, Jining 272000, China

3 Cognitive Disorders Specialized Disease Center of Jining First People's Hospital, Jining 272000, China

Corresponding author: SHAO S, E-mail: doubleshaoshuo@163.com

Conflicts of interest   None.

Received  2024-10-24
Accepted  2025-04-10
DOI: 10.12015/issn.1674-8034.2025.04.026
Cite this article as: GAO J W, ZHENG N, SHAO S. Advances in functional magnetic resonance imaging in carotid artery stenosis and associated cognitive impairment[J]. Chin J Magn Reson Imaging, 2025, 16(4): 161-167. DOI:10.12015/issn.1674-8034.2025.04.026.

[1]
BONATI L H, JANSEN O, DE BORST G J, et al. Management of atherosclerotic extracranial carotid artery stenosis[J]. Lancet Neurol, 2022, 21(3): 273-283. DOI: 10.1016/S1474-4422(21)00359-8.
[2]
NAYLOR R, RANTNER B, ANCETTI S, et al. Editor's choice–European society for vascular surgery (ESVS) 2023 clinical practice guidelines on the management of atherosclerotic carotid and vertebral artery disease[J]. Eur J Vasc Endovasc Surg, 2023, 65(1): 7-111. DOI: 10.1016/j.ejvs.2022.04.011.
[3]
KOLOMINSKY-RABAS P L, WEBER M, GEFELLER O, et al. Epidemiology of ischemic stroke subtypes according to TOAST criteria: incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study[J]. Stroke, 2001, 32(12): 2735-2740. DOI: 10.1161/hs1201.100209.
[4]
HUO X C, GAO F. Chinese guideline for endovascular treatment of acute ischemic stroke 2023[J]. Chin J Stroke, 2023, 18(6): 684-711. DOI: 10.3969/j.issn.1673-5765.2023.06.010.
[5]
HOWARD D P J, GAZIANO L, ROTHWELL P M, et al. Risk of stroke in relation to degree of asymptomatic carotid stenosis: a population-based cohort study, systematic review, and meta-analysis[J]. Lancet Neurol, 2021, 20(3): 193-202. DOI: 10.1016/S1474-4422(20)30484-1.
[6]
POPOVIC I M, LOVRENCIC-HUZJAN A, SIMUNDIC A M, et al. Cognitive performance in asymptomatic patients with advanced carotid disease[J]. Cogn Behav Neurol, 2011, 24(3): 145-151. DOI: 10.1097/WNN.0b013e3182313020.
[7]
GHAZNAWI R, VONK J M, ZWARTBOL M H, et al. Low-grade carotid artery stenosis is associated with progression of brain atrophy and cognitive decline. The SMART-MR study[J]. J Cereb Blood Flow Metab, 2023, 43(2): 309-318. DOI: 10.1177/0271678X221133859.
[8]
HU Z Z, ZHANG K, QIANG W, et al. Study of cognitive function in patients with severe asymptomatic carotid artery stenosis by a computerized neuropsychological assessment device[J/OL]. Front Psychol, 2023, 14: 1055244 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/36968715/. DOI: 10.3389/fpsyg.2023.1055244.
[9]
PORCU M, COCCO L, SALONER D, et al. Extracranial carotid artery stenosis: the effects on brain and cognition with a focus on resting-state functional connectivity[J]. J Neuroimaging, 2020, 30(6): 736-745. DOI: 10.1111/jon.12777.
[10]
BOS D, ARSHI B, VAN DEN BOUWHUIJSEN Q J A, et al. Atherosclerotic carotid plaque composition and incident stroke and coronary events[J]. J Am Coll Cardiol, 2021, 77(11): 1426-1435. DOI: 10.1016/j.jacc.2021.01.038.
[11]
PIEGZA M, WIĘCKIEWICZ G, WIERZBA D, et al. Cognitive functions in patients after carotid artery revascularization-a narrative review[J/OL]. Brain Sci, 2021, 11(10): 1307 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/34679372/. DOI: 10.3390/brainsci11101307.
[12]
ROMERO J R, BEISER A, SESHADRI S, et al. Carotid artery atherosclerosis, MRI indices of brain ischemia, aging, and cognitive impairment: the Framingham study[J]. Stroke, 2009, 40(5): 1590-1596. DOI: 10.1161/STROKEAHA.108.535245.
[13]
MARKUS H S, DE LEEUW F E. Cerebral small vessel disease: Recent advances and future directions[J]. Int J Stroke, 2023, 18(1): 4-14. DOI: 10.1177/17474930221144911.
[14]
IHLE-HANSEN H, IHLE-HANSEN H, SANDSET E C, et al. Subclinical carotid artery atherosclerosis and cognitive function: a mini-review[J/OL]. Front Neurol, 2021, 12: 705043 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/34393982/. DOI: 10.3389/fneur.2021.705043.
[15]
KAKINO Y, HATTORI Y, et al. Cerebral hemodynamic impairment and cognitive dysfunction inAPOE4Carriers with asymptomatic carotid artery stenosis/occlusion[J/OL]. J Am Heart Assoc, 2025: e039210 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/40079311/. DOI: 10.1161/jaha.124.039210.
[16]
DU L, ROY S, WANG P, et al. Unveiling the future: Advancements in MRI imaging for neurodegenerative disorders[J/OL]. Ageing Res Rev, 2024, 95: 102230 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/38364912/. DOI: 10.1016/j.arr.2024.102230.
[17]
PARASKEVAS K I, MIKHAILIDIS D P, SPINELLI F, et al. Asymptomatic carotid stenosis and cognitive impairment[J]. J Cardiovasc Surg, 2023, 64(2): 167-173. DOI: 10.23736/S0021-9509.23.12620-6.
[18]
ZHANG C, HE C, SUN J T, et al. Association and mechanism of asymptomatic carotid stenosis with cognitive impairment as suggested by multimodal MRI[J]. Chin J Magn Reson Imag, 2023, 14(8): 140-144, 170. DOI: 10.12015/issn.1674-8034.2023.08.024.
[19]
STAM C J. Modern network science of neurological disorders[J]. Nat Rev Neurosci, 2014, 15(10): 683-695. DOI: 10.1038/nrn3801.
[20]
SMITHA K A, AKHIL RAJA K, ARUN K M, et al. Resting state fMRI: a review on methods in resting state connectivity analysis and resting state networks[J]. Neuroradiol J, 2017, 30(4): 305-317. DOI: 10.1177/1971400917697342.
[21]
WANG Y T, CHEN Y, CUI Y, et al. Alterations in electroencephalographic functional connectivity in individuals with major depressive disorder: a resting-state electroencephalogram study[J/OL]. Front Neurosci, 2024, 18: 1412591 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/39055996/. DOI: 10.3389/fnins.2024.1412591.
[22]
AVELAR W M, D'ABREU A, COAN A C, et al. Asymptomatic carotid stenosis is associated with gray and white matter damage[J]. Int J Stroke, 2015, 10(8): 1197-1203. DOI: 10.1111/ijs.12574.
[23]
SMALLWOOD J, BERNHARDT B C, LEECH R, et al. The default mode network in cognition: a topographical perspective[J]. Nat Rev Neurosci, 2021, 22(8): 503-513. DOI: 10.1038/s41583-021-00474-4.
[24]
YESHURUN Y, NGUYEN M, HASSON U. The default mode network: where the idiosyncratic self meets the shared social world[J]. Nat Rev Neurosci, 2021, 22(3): 181-192. DOI: 10.1038/s41583-020-00420-w.
[25]
GUSNARD D A, RAICHLE M E, RAICHLE M E. Searching for a baseline: functional imaging and the resting human brain[J]. Nat Rev Neurosci, 2001, 2(10): 685-694. DOI: 10.1038/35094500.
[26]
HERBET G, DUFFAU H. Revisiting the functional anatomy of the human brain: toward a meta-networking theory of cerebral functions[J]. Physiol Rev, 2020, 100(3): 1181-1228. DOI: 10.1152/physrev.00033.2019.
[27]
VIPIN A, LOKE Y M, LIU S W, et al. Cerebrovascular disease influences functional and structural network connectivity in patients with amnestic mild cognitive impairment and Alzheimer's disease[J/OL]. Alzheimers Res Ther, 2018, 10(1): 82 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/30121086/. DOI: 10.1186/s13195-018-0413-8.
[28]
MAIMAITIAILI S, TANG C, LIU C, et al. Alterations in brain morphology and functional connectivity mediate cognitive decline in carotid atherosclerotic stenosis[J/OL]. Front Aging Neurosci, 2024, 16: 1395911 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/38974904/. DOI: 10.3389/fnagi.2024.1395911.
[29]
HE S H, DUAN R, LIU Z Q, et al. Altered functional connectivity is related to impaired cognition in left unilateral asymptomatic carotid artery stenosis patients[J/OL]. BMC Neurol, 2021, 21(1): 350 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/34517833/. DOI: 10.1186/s12883-021-02385-4.
[30]
FAN C H, XU D, MEI H, et al. Hemispheric coupling between structural and functional asymmetries in clinically asymptomatic carotid stenosis with cognitive impairment[J]. Brain Imaging Behav, 2024, 18(1): 192-206. DOI: 10.1007/s11682-023-00823-0.
[31]
TANI N, YAEGAKI T, NISHINO A, et al. Functional connectivity analysis and prediction of cognitive change after carotid artery stenting[J]. J Neurosurg, 2018, 131(6): 1709-1715. DOI: 10.3171/2018.7.JNS18404.
[32]
KOHTA M, OSHIRO Y, YAMAGUCHI Y, et al. Effects of carotid revascularization on cognitive function and brain functional connectivity in carotid stenosis patients with cognitive impairment: a pilot study[J]. J Neurosurg, 2023, 139(4): 1010-1017. DOI: 10.3171/2023.1.JNS222804.
[33]
CHRISTIDI F, KARAVASILIS E, SAMIOTIS K, et al. Fiber tracking: a qualitative and quantitative comparison between four different software tools on the reconstruction of major white matter tracts[J/OL]. Eur J Radiol Open, 2016, 3: 153-161 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/27489869/. DOI: 10.1016/j.ejro.2016.06.002.
[34]
SHEELAKUMARI R, SARMA S P, KESAVADAS C, et al. Multimodality neuroimaging in mild cognitive impairment: a cross-sectional comparison study[J]. Ann Indian Acad Neurol, 2018, 21(2): 133-139. DOI: 10.4103/aian.AIAN_379_17.
[35]
LIU X T, XU D, ZHONG X L, et al. Altered callosal morphology and connectivity in asymptomatic carotid stenosis[J]. J Magn Reson Imaging, 2024, 59(3): 998-1007. DOI: 10.1002/jmri.28872.
[36]
LIN C J, CHANG F C, LIN C J, et al. Long-term cognitive and multimodal imaging outcomes after carotid artery stenting vs intensive medication alone for severe asymptomatic carotid stenosis[J]. J Formos Med Assoc, 2022, 121(1Pt 1): 134-143. DOI: 10.1016/j.jfma.2021.02.007.
[37]
PORCU M, COCCO L, CAU R, et al. Mid-term effects of carotid endarterectomy on cognition and white matter status evaluated by whole brain diffusion tensor imaging metrics: a preliminary analysis[J/OL]. Eur J Radiol, 2022, 151: 110314 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/35452954/. DOI: 10.1016/j.ejrad.2022.110314.
[38]
STEWARD C E, VENKATRAMAN V K, LUI E, et al. Assessment of the DTI-ALPS parameter along the perivascular space in older adults at risk of dementia[J]. J Neuroimaging, 2021, 31(3): 569-578. DOI: 10.1111/jon.12837.
[39]
LIU H, YANG S, HE W, et al. Associations among diffusion tensor image along the perivascular space (DTI-ALPS), enlarged perivascular space (ePVS), and cognitive functions in asymptomatic patients with carotid plaque[J/OL]. Front Neurol, 2022, 12: 789918 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/35082748/. DOI: 10.3389/fneur.2021.789918.
[40]
BARISANO G, SHEIKH-BAHAEI N, LAW M, et al. Body mass index, time of day and genetics affect perivascular spaces in the white matter[J]. J Cereb Blood Flow Metab, 2021, 41(7): 1563-1578. DOI: 10.1177/0271678X20972856.
[41]
WU C H, CHEN S P, CHUNG C P, et al. Early improvement in interstitial fluid flow in patients with severe carotid stenosis after angioplasty and stenting[J]. J Stroke, 2024, 26(3): 415-424. DOI: 10.5853/jos.2023.04203.
[42]
ITAGAKI H, KOKUBO Y, KAWANAMI K, et al. Arterial spin labeling magnetic resonance imaging at short post-labeling delay reflects cerebral perfusion pressure verified by oxygen-15-positron emission tomography in cerebrovascular Steno-occlusive disease[J]. Acta Radiol, 2021, 62(2): 225-233. DOI: 10.1177/0284185120917111.
[43]
HERNANDEZ-GARCIA L, ARAMENDÍA-VIDAURRETA V, BOLAR D S, et al. Recent technical developments in ASL: a review of the state of the art[J]. Magn Reson Med, 2022, 88(5): 2021-2042. DOI: 10.1002/mrm.29381.
[44]
MARSHALL R S, LIEBESKIND D S, III J H, et al. Cortical thinning in high-grade asymptomatic carotid stenosis[J]. J Stroke, 2023, 25(1): 92-100. DOI: 10.5853/jos.2022.02285.
[45]
SABAYAN B, WESTENDORP R G J. Neurovascular-glymphatic dysfunction and white matter lesions[J]. Geroscience, 2021, 43(4): 1635-1642. DOI: 10.1007/s11357-021-00361-x.
[46]
SAGARWALA R, NASRALLAH H A. The effect of antipsychotic medications on white matter integrity in first-episode drug-naïve patients with psychosis: a review of DTI studies[J/OL]. Asian J Psychiatr, 2021, 61: 102688 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/34000500/. DOI: 10.1016/j.ajp.2021.102688.
[47]
LIN T Y. Magnetic resonance arterial spin labelling and its extended technique in carotid artery stenosis[D]. Beijing: Peking Union Medical College, 2020. DOI: 10.27648/d.cnki.gzxhu.2020.000417.
[48]
YIN X K. Clinical study of changes in blood-brain barrier permeability and altered cognitive function in patients with asymptomatic carotid artery stenosis[D]. Yangzhou: Yangzhou Univeristy, 2022. DOI: 10.27441/d.cnki.gyzdu.2022.000481.
[49]
FRAGA E, MEDINA V, CUARTERO M I, et al. Defective hippocampal neurogenesis underlies cognitive impairment by carotid stenosis-induced cerebral hypoperfusion in mice[J/OL]. Front Cell Neurosci, 2023, 17: 1219847 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/37636586/. DOI: 10.3389/fncel.2023.1219847.
[50]
FISCHER F, MALHERBE C, SCHLEMM E, et al. Intrinsic functional brain connectivity is resilient to chronic hypoperfusion caused by unilateral carotid artery stenosis[J/OL]. Neuroimage Clin, 2022, 34: 103014 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/35483135/. DOI: 10.1016/j.nicl.2022.103014.
[51]
HOSODA K. The significance of cerebral hemodynamics imaging in carotid endarterectomy: a brief review[J]. Neurol Med Chir, 2015, 55(10): 782-788. DOI: 10.2176/nmc.ra.2015-0090.
[52]
ASHBURNER J, FRISTON K J. Voxel-based morphometry: the methods[J]. Neuroimage, 2000, 11(6Pt 1): 805-821. DOI: 10.1006/nimg.2000.0582.
[53]
GAO L, RUAN Z, XIAO Y Q, et al. Surface-based cortical morphometry, white matter hyperintensity, and multidomain cognitive performance in asymptomatic carotid stenosis[J/OL]. Neuroscience, 2021, 467: 16-27 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/34022325/. DOI: 10.1016/j.neuroscience.2021.05.013.
[54]
BENLI M D, GÜVEN B, GÜVEN H, et al. Silent brain infarcts and white matter lesions in patients with asymptomatic carotid stenosis[J]. Acta Neurol Belg, 2021, 121(4): 983-991. DOI: 10.1007/s13760-020-01517-w.
[55]
WANG P J, CAI H, LUO R T, et al. Measurement of cortical atrophy and its correlation to memory impairment in patients with asymptomatic carotid artery stenosis based on VBM-DARTEL[J/OL]. Front Aging Neurosci, 2021, 13: 620763 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/34295237/. DOI: 10.3389/fnagi.2021.620763.
[56]
GAO L, XIAO Y Q, XU H B. Gray matter asymmetry in asymptomatic carotid stenosis[J]. Hum Brain Mapp, 2021, 42(17): 5665-5676. DOI: 10.1002/hbm.25645.
[57]
DUAN W, LU L, CUI C, et al. Examination of brain area volumes based on voxel-based morphometry and multidomain cognitive impairment in asymptomatic unilateral carotid artery stenosis[J/OL]. Front Aging Neurosci, 2023, 15: 1128380 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/37009454/. DOI: 10.3389/fnagi.2023.1128380.
[58]
ACOSTA-CABRONERO J, WILLIAMS G B, CARDENAS-BLANCO A, et al. In vivo quantitative susceptibility mapping (QSM) in Alzheimer's disease[J/OL]. PLoS One, 2013, 8(11): e81093 [2024-10-23]. https://pubmed.ncbi.nlm.nih.gov/24278382/. DOI: 10.1371/journal.pone.0081093.
[59]
VAN BERGEN J G, LI X, QUEVENCO F C, et al. Simultaneous quantitative susceptibility mapping and Flutemetamol-PET suggests local correlation of iron and β-amyloid as an indicator of cognitive performance at high age[J]. Neuroimage, 2018, 174: 308-316. DOI: 10.1016/j.neuroimage.2018.03.021.
[60]
SCHRÖDER N, FIGUEIREDO L S, DE LIMA M N M. Role of brain iron accumulation in cognitive dysfunction: evidence from animal models and human studies[J]. J Alzheimers Dis, 2013, 34(4): 797-812. DOI: 10.3233/JAD-121996.
[61]
SUBINUER M M T A L, ZHANG W, CAI J, et al. Frontal pole iron deposition is associated with cognitive decline in patients with carotid atherosclerosis stenosis: a quantitative susceptibility mapping study[J]. Chinese Journal of Surgery, 2024, 62(8):7 71-778. DOI: 10.3760/cma.j.cn112139-20231123-00237.
[62]
YABUKI M, AKAMATSU Y, UWANO I, et al. Association between preoperative cortical magnetic susceptibility and postoperative changes in the cerebral blood flow on cognitive improvement following carotid endarterectomy[J]. Cerebrovasc Dis, 2025, 54(1): 20-29. DOI: 10.1159/000536547.

PREV The research progress of radiomics and pathomics in glioma
NEXT Advances in research on the application of cardiac magnetic resonance imaging in the subclinical stage of diabetic cardiomyopathy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn