Share:
Share this content in WeChat
X
Review
Advances in research on the application of cardiac magnetic resonance imaging in the subclinical stage of diabetic cardiomyopathy
WU Yongshun  BAO Mengyuan  ZHANG Linxin  XING Yan 

Cite this article as: WU Y S, BAO M Y, ZHANG L X, et al. Advances in research on the application of cardiac magnetic resonance imaging in the subclinical stage of diabetic cardiomyopathy[J]. Chin J Magn Reson Imaging, 2025, 16(4): 168-173. DOI:10.12015/issn.1674-8034.2025.04.027.


[Abstract] Diabetic cardiomyopathy (DCM), as one of the common complications of diabetes mellitus (DM), manifests early as asymptomatic myocardial injury and functional abnormalities. The early diagnosis and intervention of DCM are crucial for prognosis. Due to the insufficient sensitivity of traditional imaging techniques in detecting subclinical myocardial lesions, multiparametric cardiac magnetic resonance (CMR) has emerged as a significant tool for early identification of the subclinical stage of DCM in recent years. This is attributed to its non-invasiveness, high resolution, and multifunctional imaging capabilities. Its importance has been recognized in recent guidelines and expert consensuses, and relevant research continues to evolve. This article systematically reviews the research progress of CMR in the diagnosis of subclinical lesions in DCM, focusing on myocardial metabolic abnormalities, microcirculation dysfunction, myocardial fibrosis, and myocardial strain. Furthermore, it analyzes the advantages and challenges of applying CMR in the subclinical diagnosis of DCM, providing a reference for future clinical diagnosis, treatment, and research directions
[Keywords] diabetic cardiomyopathy;cardiac magnetic resonance;magnetic resonance spectroscop;myocardial fibrosis;myocardial strain

WU Yongshun   BAO Mengyuan   ZHANG Linxin   XING Yan*  

Imaging Center, First Affiliated Hospital of Xinjiang Medica University, Urumqi 830011, China

Corresponding author: XING Y, E-mail: xingyanzwb@sina.com

Conflicts of interest   None.

Received  2025-02-24
Accepted  2025-04-10
DOI: 10.12015/issn.1674-8034.2025.04.027
Cite this article as: WU Y S, BAO M Y, ZHANG L X, et al. Advances in research on the application of cardiac magnetic resonance imaging in the subclinical stage of diabetic cardiomyopathy[J]. Chin J Magn Reson Imaging, 2025, 16(4): 168-173. DOI:10.12015/issn.1674-8034.2025.04.027.

[1]
ELSAYED N A, ALEPPO G, ARODA V R, et al. 2. classification and diagnosis of diabetes: standards of care in diabetes-2023[J/OL]. Diabetes Care, 2023, 46(Suppl 1): S19-S40 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/36507649/. DOI: 10.2337/dc23-S002.
[2]
ZHAN J B, JIN K Y, XIE R, et al. AGO2 protects against diabetic cardiomyopathy by activating mitochondrial gene translation[J]. Circulation, 2024, 149(14): 1102-1120. DOI: 10.1161/CIRCULATIONAHA.123.065546.
[3]
Chinese Diabetes Society. Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition)(Part 1)[J]. Chin J Pract Intern Med, 2021, 41(8): 668-695. DOI: 10.19538/j.nk2021080106.
[4]
POLOVINA M, LUND L H, ĐIKIĆ D, et al. Type 2 diabetes increases the long-term risk of heart failure and mortality in patients with atrial fibrillation[J]. Eur J Heart Fail, 2020, 22(1): 113-125. DOI: 10.1002/ejhf.1666.
[5]
JERKINS T, MCGILL J B, BELL D S H. Heart failure and diabetes: Clinical significance and epidemiology of this two-way association[J]. Diabetes Obes Metab, 2023, 25(Suppl 3): 3-14. DOI: 10.1111/dom.15062.
[6]
PALAZZUOLI A, IACOVIELLO M. Diabetes leading to heart failure and heart failure leading to diabetes: epidemiological and clinical evidence[J]. Heart Fail Rev, 2023, 28(3): 585-596. DOI: 10.1007/s10741-022-10238-6.
[7]
KARWI Q G, HO K L, PHERWANI S, et al. Concurrent diabetes and heart failure: interplay and novel therapeutic approaches[J]. Cardiovasc Res, 2022, 118(3): 686-715. DOI: 10.1093/cvr/cvab120.
[8]
MARWICK T H, GIMELLI A, PLEIN S, et al. Multimodality imaging approach to left ventricular dysfunction in diabetes: an expert consensus document from the European Association of Cardiovascular Imaging[J/OL]. Eur Heart J Cardiovasc Imaging, 2022, 23(2): e62-e84 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/34739054/. DOI: 10.1093/ehjci/jeab220.
[9]
STANTON A M, VADUGANATHAN M, CHANG L S, et al. Asymptomatic diabetic cardiomyopathy: an underrecognized entity in type 2 diabetes[J/OL]. Curr Diab Rep, 2021, 21(10): 41 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/34580767/. DOI: 10.1007/s11892-021-01407-2.
[10]
KHAN S, AHMAD S S, KAMAL M A. Diabetic cardiomyopathy: from mechanism to management in a nutshell[J]. Endocr Metab Immune Disord Drug Targets, 2021, 21(2): 268-281. DOI: 10.2174/1871530320666200731174724.
[11]
SEFEROVIĆ P M, PAULUS W J, ROSANO G, et al. Diabetic myocardial disorder. A clinical consensus statement of the Heart Failure Association of the ESC and the ESC Working Group on Myocardial & Pericardial Diseases[J]. Eur J Heart Fail, 2024, 26(9): 1893-1903. DOI: 10.1002/ejhf.3347.
[12]
SERAPHIM A, KNOTT K D, AUGUSTO J, et al. Quantitative cardiac MRI[J]. J Magn Reson Imaging, 2020, 51(3): 693-711. DOI: 10.1002/jmri.26789.
[13]
RIJAL P, KUMAR B, BARNWAL S, et al. Subclinical right ventricular dysfunction in patients with asymptomatic type 2 diabetes mellitus: a cross-sectional study[J]. Indian Heart J, 2023, 75(6): 451-456. DOI: 10.1016/j.ihj.2023.10.005.
[14]
BERTRAND A, LEWIS A, CAMPS J, et al. Multi-modal characterisation of early-stage, subclinical cardiac deterioration in patients with type 2 diabetes[J/OL]. Cardiovasc Diabetol, 2024, 23(1): 371 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/39427200/. DOI: 10.1186/s12933-024-02465-y.
[15]
HALABI A, YANG H, WRIGHT L, et al. Evolution of myocardial dysfunction in asymptomatic patients at risk of heart failure[J]. JACC Cardiovasc Imaging, 2021, 14(2): 350-361. DOI: 10.1016/j.jcmg.2020.09.032.
[16]
JOSEPH J J, DEEDWANIA P, ACHARYA T, et al. Comprehensive management of cardiovascular risk factors for adults with type 2 diabetes: a scientific statement from the American heart association[J/OL]. Circulation, 2022, 145(9): e722-e759 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/35000404/. DOI: 10.1161/CIR.0000000000001040.
[17]
NAKAMURA K, MIYOSHI T, YOSHIDA M, et al. Pathophysiology and treatment of diabetic cardiomyopathy and heart failure in patients with diabetes mellitus[J/OL]. Int J Mol Sci, 2022, 23(7): 3587 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/35408946/. DOI: 10.3390/ijms23073587.
[18]
PAN K L, HSU Y C, CHANG S T, et al. The role of cardiac fibrosis in diabetic cardiomyopathy: from pathophysiology to clinical diagnostic tools[J/OL]. Int J Mol Sci, 2023, 24(10): 8604 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/37239956/. DOI: 10.3390/ijms24108604.
[19]
GRACZYK P, DACH A, DYRKA K, et al. Pathophysiology and advances in the therapy of cardiomyopathy in patients with diabetes mellitus[J/OL]. Int J Mol Sci, 2024, 25(9): 5027 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/38732253/. DOI: 10.3390/ijms25095027.
[20]
SWIATKIEWICZ I, PATEL N T, VILLARREAL-GONZALEZ M, et al. Prevalence of diabetic cardiomyopathy in patients with type 2 diabetes in a large academic medical center[J/OL]. BMC Med, 2024, 22(1): 195 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/38745169/. DOI: 10.1186/s12916-024-03401-3.
[21]
HEATHER L C, GOPAL K, SRNIC N, et al. Redefining diabetic cardiomyopathy: perturbations in substrate metabolism at the heart of its pathology[J]. Diabetes, 2024, 73(5): 659-670. DOI: 10.2337/dbi23-0019.
[22]
KASHIWAGI-TAKAYAMA R, KOZAWA J, HOSOKAWA Y, et al. Myocardial fat accumulation is associated with cardiac dysfunction in patients with type 2 diabetes, especially in elderly or female patients: a retrospective observational study[J/OL]. Cardiovasc Diabetol, 2023, 22(1): 48 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/36882731/. DOI: 10.1186/s12933-023-01782-y.
[23]
YURISTA S R, EDER R A, KWON D H, et al. Magnetic resonance imaging of cardiac metabolism in heart failure: how far have we come?[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(10): 1277-1289. DOI: 10.1093/ehjci/jeac121.
[24]
GAO Y, REN Y, GUO Y K, et al. Metabolic syndrome and myocardium steatosis in subclinical type 2 diabetes mellitus: a 1H-magnetic resonance spectroscopy study[J/OL]. Cardiovasc Diabetol, 2020, 19(1): 70 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/32471503/. DOI: 10.1186/s12933-020-01044-1.
[25]
SOGHOMONIAN A, DUTOUR A, KACHENOURA N, et al. Is increased myocardial triglyceride content associated with early changes in left ventricular function? A 1H-MRS and MRI strain study[J/OL]. Front Endocrinol, 2023, 14: 1181452 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/37424866/. DOI: 10.3389/fendo.2023.1181452.
[26]
NASCIMBEN L, INGWALL J S, PAULETTO P, et al. Creatine kinase system in failing and nonfailing human myocardium[J]. Circulation, 1996, 94(8): 1894-1901. DOI: 10.1161/01.cir.94.8.1894.
[27]
LEVELT E, PAVLIDES M, BANERJEE R, et al. Ectopic and visceral fat deposition in lean and obese patients with type 2 diabetes[J]. J Am Coll Cardiol, 2016, 68(1): 53-63. DOI: 10.1016/j.jacc.2016.03.597.
[28]
CROTEAU D, BAKA T, YOUNG S, et al. SGLT2 inhibitor ertugliflozin decreases elevated intracellular sodium, and improves energetics and contractile function in diabetic cardiomyopathy[J/OL]. Biomed Pharmacother, 2023, 160: 114310 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/36731341/. DOI: 10.1016/j.biopha.2023.114310.
[29]
FRIJIA F, FLORI A, GIOVANNETTI G, et al. MRI application and challenges of hyperpolarized carbon-13 pyruvate in translational and clinical cardiovascular studies: a literature review[J/OL]. Diagnostics, 2024, 14(10): 1035 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/38786333/. DOI: 10.3390/diagnostics14101035.
[30]
RIDER O J, APPS A, MILLER J J J J, et al. Noninvasive in vivo assessment of cardiac metabolism in the healthy and diabetic human heart using hyperpolarized 13C MRI[J]. Circ Res, 2020, 126(6): 725-736. DOI: 10.1161/CIRCRESAHA.119.316260.
[31]
SHAUL D, AZAR A, SAPIR G, et al. Correlation between lactate dehydrogenase/pyruvate dehydrogenase activities ratio and tissue pH in the perfused mouse heart: a potential noninvasive indicator of cardiac pH provided by hyperpolarized magnetic resonance[J/OL]. NMR Biomed, 2021, 34(2): e4444 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/33258527/. DOI: 10.1002/nbm.4444.
[32]
SAVIC D, BALL V, HOLZNER L, et al. Hyperpolarized magnetic resonance shows that the anti-ischemic drug meldonium leads to increased flux through pyruvate dehydrogenase in vivo resulting in improved post-ischemic function in the diabetic heart[J/OL]. NMR Biomed, 2021, 34(4): e4471 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/33458907/. DOI: 10.1002/nbm.4471.
[33]
LARSON P E Z, TANG S Y, LIU X X, et al. Regional quantification of cardiac metabolism with hyperpolarized [1-13C]-pyruvate CMR evaluated in an oral glucose challenge[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 77 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/38093285/. DOI: 10.1186/s12968-023-00972-7.
[34]
NING Y Y, ZHOU I Y, CARAVAN P. Quantitative in vivo molecular MRI[J/OL]. Adv Mater, 2024, 36(44): e2407262 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/39279542/. DOI: 10.1002/adma.202407262.
[35]
NIE Z, ZHANG K, CHEN X Y, et al. A multifunctional integrated metal-free MRI agent for early diagnosis of oxidative stress in a mouse model of diabetic cardiomyopathy[J/OL]. Adv Sci, 2023, 10(7): e2206171 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/36596646/. DOI: 10.1002/advs.202206171.
[36]
HUANG K M, LUO X L, LIAO B, et al. Insights into SGLT2 inhibitor treatment of diabetic cardiomyopathy: focus on the mechanisms[J/OL]. Cardiovasc Diabetol, 2023, 22(1): 86 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/37055837/. DOI: 10.1186/s12933-023-01816-5.
[37]
BALCıOĞLU A S, MÜDERRISOĞLU H. Diabetes and cardiac autonomic neuropathy: clinical manifestations, cardiovascular consequences, diagnosis and treatment[J]. World J Diabetes, 2015, 6(1): 80-91. DOI: 10.4239/wjd.v6.i1.80.
[38]
JIANG L, YAN W F, ZHANG L, et al. Early left ventricular microvascular dysfunction in diabetic pigs: a longitudinal quantitative myocardial perfusion CMR study[J/OL]. Cardiovasc Diabetol, 2024, 23(1): 9 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/38184602/. DOI: 10.1186/s12933-023-02106-w.
[39]
LI X M, JIANG L, GUO Y K, et al. The additive effects of type 2 diabetes mellitus on left ventricular deformation and myocardial perfusion in essential hypertension: a 3.0 T cardiac magnetic resonance study[J/OL]. Cardiovasc Diabetol, 2020, 19(1): 161 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/32998742/. DOI: 10.1186/s12933-020-01138-w.
[40]
WANG S, KIM P, WANG H N, et al. Myocardial blood flow quantification using stress cardiac magnetic resonance improves detection of coronary artery disease[J]. JACC Cardiovasc Imaging, 2024, 17(12): 1428-1441. DOI: 10.1016/j.jcmg.2024.07.023.
[41]
YEO J L, GULSIN G S, BRADY E M, et al. Association of ambulatory blood pressure with coronary microvascular and cardiac dysfunction in asymptomatic type 2 diabetes[J/OL]. Cardiovasc Diabetol, 2022, 21(1): 85 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/35643571/. DOI: 10.1186/s12933-022-01528-2.
[42]
LI X M, JIANG L, MIN C Y, et al. Myocardial perfusion imaging by cardiovascular magnetic resonance: research progress and current implementation[J/OL]. Curr Probl Cardiol, 2023, 48(6): 101665 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/36828047/. DOI: 10.1016/j.cpcardiol.2023.101665.
[43]
NG M Y, ZHOU W L, VARDHANABHUTI V, et al. Cardiac magnetic resonance for asymptomatic patients with type 2 diabetes and cardiovascular high risk (CATCH): a pilot study[J/OL]. Cardiovasc Diabetol, 2020, 19(1): 42 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/32234045/. DOI: 10.1186/s12933-020-01019-2.
[44]
LI X N, KANG S, LU Z G, et al. Assessment of myocardial microvascular dysfunction in patients with different stages of diabetes mellitus: an adenosine stress perfusion cardiac magnetic resonance study[J/OL]. Eur J Radiol, 2024, 178: 111600 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/39029239/. DOI: 10.1016/j.ejrad.2024.111600.
[45]
WANG J, YANG Z G, GUO Y K, et al. Incremental effect of coronary obstruction on myocardial microvascular dysfunction in type 2 diabetes mellitus patients evaluated by first-pass perfusion CMR study[J/OL]. Cardiovasc Diabetol, 2023, 22(1): 154 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/37381007/. DOI: 10.1186/s12933-023-01873-w.
[46]
RIDWAN M, DIMIATI H, SYUKRI M, et al. Potential molecular mechanism underlying cardiac fibrosis in diabetes mellitus: a narrative review[J/OL]. Egypt Heart J, 2023, 75(1): 46 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/37306727/. DOI: 10.1186/s43044-023-00376-z.
[47]
LIU H R, YAN W F, MA C Y, et al. Early detection of cardiac fibrosis in diabetic mice by targeting myocardiopathy and matrix metalloproteinase 2[J/OL]. Acta Biomater, 2024, 176: 367-378 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/38244659/. DOI: 10.1016/j.actbio.2024.01.017.
[48]
ABASIJIANG A D L, LI S, QI H C, et al. Application and research progress of magnetic resonance parameter quantitative technique in myocardial involvement diseases[J]. Chin J Magn Reson Imag, 2023, 14(2): 179-185. DOI: 10.12015/issn.1674-8034.2023.02.032.
[49]
MAREY A, ALABDULLAH A, GHORAB H, et al. Extracellular volume fraction and native T1 mapping in diabetic cardiomyopathy: a comprehensive meta-analysis[J/OL]. BMC Cardiovasc Disord, 2025, 25(1): 70 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/39893360/. DOI: 10.1186/s12872-025-04496-z.
[50]
TADIC M, CUSPIDI C, CALICCHIO F, et al. Diabetic cardiomyopathy: How can cardiac magnetic resonance help?[J]. Acta Diabetol, 2020, 57(9): 1027-1034. DOI: 10.1007/s00592-020-01528-2.
[51]
ZHANG H K, SHI C Y, YANG L, et al. Quantification of early diffuse myocardial fibrosis through 7.0 T cardiac magnetic resonance T1 mapping in a type 1 diabetic mellitus mouse model[J]. J Magn Reson Imaging, 2023, 57(1): 167-177. DOI: 10.1002/jmri.28207.
[52]
SHAO G Z, CAO Y K, CUI Y, et al. Multiparametric CMR imaging of myocardial structure and function changes in diabetic mini-pigs with preserved LV function: a preliminary study[J/OL]. BMC Cardiovasc Disord, 2022, 22(1): 143 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/35366800/. DOI: 10.1186/s12872-022-02597-7.
[53]
KHAN M A, YANG E Y, NGUYEN D T, et al. Examining the relationship and prognostic implication of diabetic status and extracellular matrix expansion by cardiac magnetic resonance[J/OL]. Circ Cardiovasc Imaging, 2020, 13(7): e011000 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/32673493/. DOI: 10.1161/CIRCIMAGING.120.011000.
[54]
LAOHABUT I, SONGSANGJINDA T, KAOLAWANICH Y, et al. Myocardial extracellular volume fraction and T1 mapping by cardiac magnetic resonance compared between patients with and without type 2 diabetes, and the effect of ECV and T2D on cardiovascular outcomes[J/OL]. Front Cardiovasc Med, 2021, 8: 771363 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/34950715/. DOI: 10.3389/fcvm.2021.771363.
[55]
MIAO Q F, HUA S, GONG Y W, et al. Free-breathing non-contrast T1ρ dispersion magnetic resonance imaging of myocardial interstitial fibrosis in comparison with extracellular volume fraction[J/OL]. J Cardiovasc Magn Reson, 2024, 26(2): 101093 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/39245148/. DOI: 10.1016/j.jocmr.2024.101093.
[56]
SHU H M, XU H M, PAN Z X, et al. Early detection of myocardial involvement by non-contrast T1ρ mapping of cardiac magnetic resonance in type 2 diabetes mellitus[J/OL]. Front Endocrinol, 2024, 15: 1335899 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/38510696/. DOI: 10.3389/fendo.2024.1335899.
[57]
QUAN C, DU Q, LI M, et al. A PKB-SPEG signaling nexus links insulin resistance with diabetic cardiomyopathy by regulating calcium homeostasis[J/OL]. Nat Commun, 2020, 11(1): 2186 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/32367034/. DOI: 10.1038/s41467-020-16116-9.
[58]
LIAN X Q, ZHANG H Y, ZHAO S H, et al. From medical image to clinical diagnosis and treatment: Advances in cardiovascular magnetic resonance in 2023[J]. Chin J Magn Reson Imag, 2024, 15(7): 184-190, 215. DOI: 10.12015/issn.1674-8034.2024.07.031.
[59]
CHADALAVADA S, FUNG K, RAUSEO E, et al. Myocardial strain measured by cardiac magnetic resonance predicts cardiovascular morbidity and death[J]. J Am Coll Cardiol, 2024, 84(7): 648-659. DOI: 10.1016/j.jacc.2024.05.050.
[60]
NESTI L, PUGLIESE N R, SCIUTO P, et al. Effect of empagliflozin on left ventricular contractility and peak oxygen uptake in subjects with type 2 diabetes without heart disease: results of the EMPA-HEART trial[J/OL]. Cardiovasc Diabetol, 2022, 21(1): 181 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/36096863/. DOI: 10.1186/s12933-022-01618-1.
[61]
ZHOU F L, DENG M Y, DENG L L, et al. Evaluation of the effects of glycated hemoglobin on cardiac function in patients with short-duration type 2 diabetes mellitus: a cardiovascular magnetic resonance study[J/OL]. Diabetes Res Clin Pract, 2021, 178: 108952 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/34273454/. DOI: 10.1016/j.diabres.2021.108952.
[62]
LI Z M, HAN D, QI T F, et al. Hemoglobin A1c in type 2 diabetes mellitus patients with preserved ejection fraction is an independent predictor of left ventricular myocardial deformation and tissue abnormalities[J/OL]. BMC Cardiovasc Disord, 2023, 23(1): 49 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/36698087/. DOI: 10.1186/s12872-023-03082-5.
[63]
QIAN W L, YANG Z G, SHI R, et al. Left atrioventricular interaction and impaired left atrial phasic function in type 2 diabetes mellitus patients with or without Anemia: a cardiac magnetic resonance study[J/OL]. Cardiovasc Diabetol, 2023, 22(1): 178 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/37443014/. DOI: 10.1186/s12933-023-01910-8.
[64]
LI X M, SHI R, SHEN M T, et al. Impact of type 2 diabetes mellitus on left atrioventricular coupling and left atrial deformation in patients with essential hypertension: an MRI feature tracking study[J]. J Magn Reson Imaging, 2025, 61(1): 321-334. DOI: 10.1002/jmri.29427.
[65]
SHI R, JIANG Y N, QIAN W L, et al. Assessment of left atrioventricular coupling and left atrial function impairment in diabetes with and without hypertension using CMR feature tracking[J/OL]. Cardiovasc Diabetol, 2023, 22(1): 295 [2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/37904206/. DOI: 10.1186/s12933-023-01997-z.

PREV Advances in functional magnetic resonance imaging in carotid artery stenosis and associated cognitive impairment
NEXT Research progress on the application of intravoxel incoherent motion in myocardial microcirculation
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn