Share:
Share this content in WeChat
X
Review
Research progress on the application of intravoxel incoherent motion in myocardial microcirculation
ZHAO Lei  XU Ning  WANG Cuiyan 

Cite this article as: ZHAO L, XU N, WANG C Y. Research progress on the application of intravoxel incoherent motion in myocardial microcirculation[J]. Chin J Magn Reson Imaging, 2025, 16(4): 174-179. DOI:10.12015/issn.1674-8034.2025.04.028.


[Abstract] Myocardial microcirculatory dysfunction serves as an independent risk factor for adverse cardiovascular events such as heart failure and cardiogenic sudden death. Early quantitative assessment of myocardial microcirculation has therefore become a research hotspot in cardiovascular imaging. Intravoxel incoherent movement (IVIM) magnetic resonance imaging, a technique capable of evaluating tissue microcirculatory function, provides a non-invasive, multi-parametric, and dynamically assessable novel perspective for early diagnosis of myocardial microcirculatory dysfunction. This paper systematically elaborates on the repeatability and stability of IVIM in myocardial microcirculation assessment, explores the quantitative characteristics of myocardial microcirculation under different pathological conditions using IVIM, and highlights the unresolved issues and emerging research directions in current IVIM-based myocardial microcirculation evaluations. This comprehensive review aims to enable subsequent researchers to grasp the latest developments in this field.
[Keywords] hypertensive cardiomyopathy;ischemic cardiomyopathy;hypertrophic cardiomyopathy;intravoxel incoherent movement;magnetic resonance imaging;myocardial microcirculation

ZHAO Lei1   XU Ning1   WANG Cuiyan2*  

1 Department of Imaging, Jinan Zhangqiu District People's Hospital, Jinan 250200, China

2 Department of Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China

Corresponding author: WANG C Y, E-mail: wcyzhang@163.com

Conflicts of interest   None.

Received  2025-02-10
Accepted  2025-04-10
DOI: 10.12015/issn.1674-8034.2025.04.028
Cite this article as: ZHAO L, XU N, WANG C Y. Research progress on the application of intravoxel incoherent motion in myocardial microcirculation[J]. Chin J Magn Reson Imaging, 2025, 16(4): 174-179. DOI:10.12015/issn.1674-8034.2025.04.028.

[1]
YU B, PANG Z W, ZHAO J, et al. Ischemic myocardium targeting peptide-guided nanobubbles for multimodal imaging and treatment of coronary microvascular dysfunction[J/OL]. Adv Healthc Mater, 2025: e2404477 [2025-02-09]. https://pubmed.ncbi.nlm.nih.gov/39853877/. DOI: 10.1002/adhm.202404477.
[2]
QU X L, YANG P, JIAO L, et al. Trimetazidine: activating AMPK signal to ameliorate coronary microcirculation dysfunction after myocardial infarction[J/OL]. Front Biosci, 2025, 30(1): 25565 [2025-02-09]. https://pubmed.ncbi.nlm.nih.gov/39862078/. DOI: 10.31083/FBL25565.
[3]
GURGOGLIONE F L, BENATTI G, DENEGRI A, et al. Coronary microvascular dysfunction: insights on prognosis and future perspectives[J/OL]. Rev Cardiovasc Med, 2025, 26(1): 25757 [2025-02-09]. https://pubmed.ncbi.nlm.nih.gov/39867196/. DOI: 10.31083/RCM25757.
[4]
AL-GULLY J, OLIVERI F, FOROUZANFAR J P, et al. Prognostic role of con-/ discordant coronary flow reserve and microvascular resistance in coronary microvascular disease: a systematic review and network meta-analysis[J/OL]. Open Heart, 2025, 12(1): e003055 [2025-02-09]. https://pubmed.ncbi.nlm.nih.gov/39842937/. DOI: 10.1136/openhrt-2024-003055.
[5]
VELOLLARI O, ROMMEL K P, KRESOJA K P, et al. Focusing on microvascular function in heart failure with preserved ejection fraction[J]. Heart Fail Rev, 2025, 30(3): 493-503. DOI: 10.1007/s10741-024-10479-7.
[6]
PASCHOAL A M, ZOTIN M C Z, COSTA L M D, et al. Feasibility of intravoxel incoherent motion in the assessment of tumor microvasculature and blood-brain barrier integrity: a case-based evaluation of gliomas[J]. MAGMA, 2022, 35(1): 17-27. DOI: 10.1007/s10334-021-00987-0.
[7]
YANG D, REN Y K, WANG G Y, et al. Diffusion-weighted imaging based on intravoxel incoherent motion: correlation with molecular prognostic factors and subtypes in breast cancer[J]. Acta Radiol, 2025, 66(1): 35-41. DOI: 10.1177/02841851241296029.
[8]
LI X X, LIU B, CUI Y, et al. Intravoxel incoherent motion diffusion-weighted imaging and dynamic contrast-enhanced MRI for predicting parametrial invasion in cervical cancer[J]. Abdom Radiol, 2024, 49(9): 3232-3240. DOI: 10.1007/s00261-024-04339-z.
[9]
MAINO C, VERNUCCIO F, CANNELLA R, et al. Non-invasive imaging biomarkers in chronic liver disease[J/OL]. Eur J Radiol, 2024, 181: 111749 [2025-02-09]. https://pubmed.ncbi.nlm.nih.gov/39317002/. DOI: 10.1016/j.ejrad.2024.111749.
[10]
XIANG X R, CHEN Z X, LIN C, et al. Application progresses of intravoxel incoherent motion imaging in heart disease[J]. Chin J Magn Reson Imag, 2020, 11(10): 940-942. DOI: 10.12015/issn.1674-8034.2020.10.027.
[11]
GRAVINA M, CASAVECCHIA G, MANGINI F, et al. Magnetic resonance mapping for the assessment of cardiomyopathies and myocardial disease[J/OL]. Int J Cardiol, 2024, 415: 132440 [2025-02-09]. https://pubmed.ncbi.nlm.nih.gov/39153509/. DOI: 10.1016/j.ijcard.2024.132440.
[12]
LE BIHAN D, BRETON E, LALLEMAND D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders[J]. Radiology, 1986, 161(2): 401-407. DOI: 10.1148/radiology.161.2.3763909.
[13]
LE BIHAN D, BRETON E, LALLEMAND D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging[J]. Radiology, 1988, 168(2): 497-505. DOI: 10.1148/radiology.168.2.3393671.
[14]
MINTEN L, MCCUTCHEON K, VANHAVERBEKE M, et al. Coronary physiological indexes to evaluate myocardial ischemia in patients with aortic stenosis undergoing valve replacement[J]. JACC Cardiovasc Interv, 2025, 18(2): 201-212. DOI: 10.1016/j.jcin.2024.10.024.
[15]
LIU Z N, LIU Y J, LIU J C, et al. Noninvasive and fast method of calculation for instantaneous wave-free ratio based on haemodynamics and deep learning[J/OL]. Comput Methods Programs Biomed, 2024, 255: 108355 [2025-02-09]. https://pubmed.ncbi.nlm.nih.gov/39067137/. DOI: 10.1016/j.cmpb.2024.108355.
[16]
ARAI A E, SCHULZ-MENGER J, SHAH D J, et al. Stress perfusion cardiac magnetic resonance vs SPECT imaging for detection of coronary artery disease[J]. J Am Coll Cardiol, 2023, 82(19): 1828-1838. DOI: 10.1016/j.jacc.2023.08.046.
[17]
DI CARLI M F. Future of radionuclide myocardial perfusion imaging: transitioning from SPECT to PET[J/OL]. J Nucl Med, 2023, 64(Suppl 2): 3S-10S [2025-02-09]. https://pubmed.ncbi.nlm.nih.gov/37918841/. DOI: 10.2967/jnumed.122.264864.
[18]
CAPDEVILLE S, GHOLSON B A, LINDNER J R. Contrast echocardiography for assessing myocardial perfusion[J]. Curr Cardiol Rep, 2023, 25(11): 1581-1587. DOI: 10.1007/s11886-023-01970-y.
[19]
MOULIN K, STOECK C T, AXEL L, et al. In vivo cardiac diffusion imaging without motion-compensation leads to unreasonably high diffusivity[J]. J Magn Reson Imaging, 2023, 58(6): 1990-1991. DOI: 10.1002/jmri.28703.
[20]
CALLOT V, BENNETT E, DECKING U K M, et al. In vivo study of microcirculation in canine myocardium using the IVIM method[J]. Magn Reson Med, 2003, 50(3): 531-540. DOI: 10.1002/mrm.10568.
[21]
ZHANG J, XU S T, LUO S, et al. Image improved intravoxel incoherent motion MRI with optimized trigger delays based on strain curve analysis to evaluate myocardial microvascular dysfunction of exertional heat illness[J]. J Magn Reson Imaging, 2023, 58(6): 1785-1796. DOI: 10.1002/jmri.28684.
[22]
DELATTRE B M A, VIALLON M, WEI H J, et al. In vivo cardiac diffusion-weighted magnetic resonance imaging: quantification of normal perfusion and diffusion coefficients with intravoxel incoherent motion imaging[J]. Invest Radiol, 2012, 47(11): 662-670. DOI: 10.1097/RLI.0b013e31826ef901.
[23]
MUNOZ C, LIM E, FERREIRA P F, et al. Simultaneous non-contrast assessment of cardiac microstructure and perfusion in vivo in the human heart[J/OL]. J Cardiovasc Magn Reson, 2025, 27(1): 101129 [2025-02-09]. https://pubmed.ncbi.nlm.nih.gov/39622344/. DOI: 10.1016/j.jocmr.2024.101129.
[24]
SIMCHICK G, ALLEN T J, HERNANDO D. Reproducibility of intravoxel incoherent motion quantification in the liver across field strengths and gradient hardware[J]. Magn Reson Med, 2024, 92(6): 2652-2669. DOI: 10.1002/mrm.30237.
[25]
ZHANG X S, SANG X Q, KUAI Z X, et al. Investigation of intravoxel incoherent motion tensor imaging for the characterization of the in vivo human heart[J]. Magn Reson Med, 2021, 85(3): 1414-1426. DOI: 10.1002/mrm.28523.
[26]
KAANDORP M P T, ZIJLSTRA F, FEDERAU C, et al. Deep learning intravoxel incoherent motion modeling: Exploring the impact of training features and learning strategies[J]. Magn Reson Med, 2023, 90(1): 312-328. DOI: 10.1002/mrm.29628.
[27]
WANG L, WANG J C, YANG Q Q, et al. Improved deep learning-based IVIM parameter estimation via the use of more "realistic" simulated brain data[J]. Med Phys, 2025, 52(4): 2279-2294. DOI: 10.1002/mp.17583.
[28]
WANG J C, GENG W H, WU J, et al. Intravoxel incoherent motion magnetic resonance imaging reconstruction from highly under-sampled diffusion-weighted PROPELLER acquisition data via physics-informed residual feedback unrolled network[J/OL]. Phys Med Biol, 2023, 68(17) [2024-03-26]. https://pubmed.ncbi.nlm.nih.gov/37541226/. DOI: 10.1088/1361-6560/aced77.
[29]
ZHANG X S, LIU E H, WANG X Y, et al. Short-term repeatability of in vivo cardiac intravoxel incoherent motion tensor imaging in healthy human volunteers[J]. J Magn Reson Imaging, 2022, 55(3): 854-865. DOI: 10.1002/jmri.27847.
[30]
HE X C, CHEN Z X, GUAN Q Y, et al. Preliminary study on quantitative evaluation of myocardial tissue characteristics by incoherent motion imaging in magnetic resonance voxel[J]. Prev Treat Cardiovasc Dis, 2021, 11(12): 15-17. DOI: 10.3969/j.issn.1672-3015(x).2021.12.005s.
[31]
LI S L, MOU A N, LI X, et al. Myocardium microcirculation study in a healthy Chinese population using 3.0-T cardiac magnetic resonance intravoxel incoherent motion imaging[J]. Acta Radiol, 2022, 63(5): 596-605. DOI: 10.1177/02841851211006311.
[32]
VRINTS C, ANDREOTTI F, KOSKINAS K C, et al. 2024 ESC Guidelines for the management of chronic coronary syndromes[J]. Eur Heart J, 2024, 45(36): 3415-3537. DOI: 10.1093/eurheartj/ehae177.
[33]
AMBROSINI A P, FISHMAN E S, DAMLUJI A A, et al. Chronic coronary disease in older adults[J]. Med Clin North Am, 2024, 108(3): 581-594. DOI: 10.1016/j.mcna.2023.12.004.
[34]
BELMONTE M, FOÀ A, PAOLISSO P, et al. Coronary microvascular dysfunction beyond the spectrum of chronic coronary syndromes[J/OL]. Prog Cardiovasc Dis, 2024, 87: 73-82 [2024-03-26]. https://pubmed.ncbi.nlm.nih.gov/39447854/. DOI: 10.1016/j.pcad.2024.10.006.
[35]
AN D A, CHEN B H, Rui-Wu, et al. Diagnostic performance of intravoxel incoherent motion diffusion-weighted imaging in the assessment of the dynamic status of myocardial perfusion[J]. J Magn Reson Imaging, 2018, 48(6): 1602-1609. DOI: 10.1002/jmri.26179.
[36]
BACMEISTER L, CAVUS E, BOHNEN S, et al. Serum concentrations of matrix metalloproteinase-1 and procollagen type I carboxy terminal propeptide discriminate infarct-like myocarditis and non-ST-segment-elevation myocardial infarction[J/OL]. J Am Heart Assoc, 2024, 13(14): e034194 [2024-03-26]. https://pubmed.ncbi.nlm.nih.gov/38989835/. DOI: 10.1161/JAHA.124.034194.
[37]
JAHNKE C, SINN M, HOT A, et al. Differentiation of acute non-ST elevation myocardial infarction and acute infarct-like myocarditis by visual pattern analysis: a head-to-head comparison of different cardiac MR techniques[J]. Eur Radiol, 2023, 33(9): 6258-6266. DOI: 10.1007/s00330-023-09905-5.
[38]
AN D A, SHI R Y, WU R, et al. Different myocardial perfusion status in acute myocardial infarction and infarct-like myocarditis: a novel intravoxel incoherent motion diffusion-weighted imaging based MRI study[J]. Acad Radiol, 2020, 27(8): 1093-1102. DOI: 10.1016/j.acra.2019.10.019.
[39]
LU Y H, XUE Z K, GAO W Q, et al. Microcirculatory dysfunction in hypertrophic cardiomyopathy with chest pain assessed by angiography-derived microcirculatory resistance[J/OL]. Sci Rep, 2024, 14(1): 16977 [2024-03-26]. https://pubmed.ncbi.nlm.nih.gov/39043796/. DOI: 10.1038/s41598-024-67979-7.
[40]
ABULAITI A, ZHANG Q, HUANG H Y, et al. The value of the cardiac magnetic resonance intravoxel incoherent motion technique in evaluating microcirculatory dysfunction in hypertrophic cardiomyopathy[J/OL]. J Interv Cardiol, 2023, 2023: 4611602 [2024-03-26]. https://pubmed.ncbi.nlm.nih.gov/37415784/. DOI: 10.1155/2023/4611602.
[41]
MARON B J, DESAI M Y, NISHIMURA R A, et al. Management of hypertrophic cardiomyopathy: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2022, 79(4): 390-414. DOI: 10.1016/j.jacc.2021.11.021.
[42]
WU R, AN D A, SHI R Y, et al. The feasibility and diagnostic value of intravoxel incoherent motion diffusion-weighted imaging in the assessment of myocardial fibrosis in hypertrophic cardiomyopathy patients[J/OL]. Eur J Radiol, 2020, 132: 109333 [2024-03-26]. https://pubmed.ncbi.nlm.nih.gov/33068839/. DOI: 10.1016/j.ejrad.2020.109333.
[43]
XIANG X R, LIN X Q, ZHANG B T, et al. Microvascular dysfunction associates with outcomes in hypertrophic cardiomyopathy: insights from the intravoxel incoherent motion MRI[J]. J Magn Reson Imaging, 2023, 57(6): 1766-1775. DOI: 10.1002/jmri.28450.
[44]
GONZÁLEZ A, LÓPEZ B, RAVASSA S, et al. Myocardial interstitial fibrosis in hypertensive heart disease: from mechanisms to clinical management[J]. Hypertension, 2024, 81(2): 218-228. DOI: 10.1161/HYPERTENSIONAHA.123.21708.
[45]
ZHAO L, WANG H P, QIU D W, et al. Cardiac intravoxel incoherent motion diffusion-weighted imaging to assess myocardial microcirculation dysfunction in hypertension[J]. Quant Imaging Med Surg, 2024, 14(8): 5346-5357. DOI: 10.21037/qims-24-108.
[46]
ZHAO W J, LI K, TANG L T, et al. Coronary microvascular dysfunction and diffuse myocardial fibrosis in patients with type 2 diabetes using quantitative perfusion MRI[J]. J Magn Reson Imaging, 2024, 60(6): 2395-2406. DOI: 10.1002/jmri.29296.
[47]
LI S L. Preliminary study on the application of IVIM technology in evaluating myocardial microcirculation in diabetic patients[D]. Dalian: Dalian Medical University, 2020. DOI: 10.26994/d.cnki.gdlyu.2020.000440.
[48]
MOU A N, ZHANG C, LI M Y, et al. Evaluation of myocardial microcirculation using intravoxel incoherent motion imaging[J]. J Magn Reson Imaging, 2017, 46(6): 1818-1828. DOI: 10.1002/jmri.25706.
[49]
JONES X M, BOTTINI N, BOIN F, et al. Cardiac involvement in systemic sclerosis: a critical review of knowledge gaps and opportunities[J/OL]. J Scleroderma Relat Disord, 2025: 23971983241313096 [2024-03-26]. https://pubmed.ncbi.nlm.nih.gov/39845449/. DOI: 10.1177/23971983241313096.
[50]
FAIRLEY J L, O'ROURKE R, PURANIK R, et al. Cardiac magnetic resonance imaging in systemic sclerosis: Heart involvement in high-resolution[J]. Rheumatol Immunol Res, 2024, 5(2): 83-92. DOI: 10.1515/rir-2024-0011.
[51]
TERRIER B, DECHARTRES A, GOUYA H, et al. Cardiac intravoxel incoherent motion diffusion-weighted magnetic resonance imaging with T1 mapping to assess myocardial perfusion and fibrosis in systemic sclerosis: association with cardiac events from a prospective cohort study[J]. Arthritis Rheumatol, 2020, 72(9): 1571-1580. DOI: 10.1002/art.41308.
[52]
ZHANG Z, WU X, ZOU Z, et al. Heat stroke: Pathogenesis, diagnosis, and current treatment[J/OL]. Ageing Res Rev, 2024, 100: 102409 [2024-03-26]. https://pubmed.ncbi.nlm.nih.gov/38986844/. DOI: 10.1016/j.arr.2024.102409.
[53]
BAO C H, FENG Q, ZHANG C, et al. Heat stroke with significantly elevated troponin and dynamic ECG changes: Myocardial infarction or myocardial injury?[J]. Am J Med Sci, 2024, 368(3): 258-264. DOI: 10.1016/j.amjms.2024.06.005.
[54]
MATTIOLI R, ILARI A, COLOTTI B, et al. Doxorubicin and other anthracyclines in cancers: activity, chemoresistance and its overcoming[J/OL]. Mol Aspects Med, 2023, 93: 101205 [2024-03-26]. https://pubmed.ncbi.nlm.nih.gov/37515939/. DOI: 10.1016/j.mam.2023.101205.
[55]
LI S L, TIAN D, LI X, et al. Case report: Evaluation of myocardial microcirculation in patients with breast cancer after anthracycline chemotherapy by using intravoxel incoherent motion imaging[J/OL]. Front Cardiovasc Med, 2022, 9: 900309 [2024-03-26]. https://pubmed.ncbi.nlm.nih.gov/36211583/. DOI: 10.3389/fcvm.2022.900309.
[56]
DENG Y J, TANG M, LIU Q, et al. Prediction of cardiac remodeling and myocardial fibrosis in athletes based on IVIM-DWI images[J/OL]. iScience, 2024, 28(1): 111567 [2024-03-26]. https://pubmed.ncbi.nlm.nih.gov/39829680/. DOI: 10.1016/j.isci.2024.111567.

PREV Advances in research on the application of cardiac magnetic resonance imaging in the subclinical stage of diabetic cardiomyopathy
NEXT Cardiac magnetic resonance in evaluating cardioxicity induced by anthracycline chemotherapy in breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn