Share:
Share this content in WeChat
X
Review
Cardiac magnetic resonance in evaluating cardioxicity induced by anthracycline chemotherapy in breast cancer
CHEN Shuangyan  FU Bing  SU Chunyan  YANG Zhi 

Cite this article as: CHEN S Y, FU B, SU C Y, et al. Cardiac magnetic resonance in evaluating cardioxicity induced by anthracycline chemotherapy in breast cancer[J]. Chin J Magn Reson Imaging, 2025, 16(4): 180-185. DOI:10.12015/issn.1674-8034.2025.04.029.


[Abstract] Breast cancer is the most common malignancy in Chinese women. As the commonest chemotherapy drugs for breast cancer, anthracyclines can effectively control tumor progression and improve the long-term prognosis of patients. However, anthracyclines have some cardiotoxicity and are associated with various degrees of myocardial damage during tumor chemotherapy, affecting patients' quality of life. Therefore, early detection of myocardial damage caused by anthracyclines is helpful for early clinical intervention and protection of patients' heart function. Cardiac magnetic resonance (CMR) has potential value in early detection of myocardial damage due to its non-radiative, non-invasive, multi-parameter, multi-sequence imaging advantages. This review reviews the value of CMR in assessing cardiotoxicity in breast cancer patients treated with anthracyclines, in order to enhance the awareness of radiologist and clinicians regarding myocardial injury in such patients and improve the appliaction of CMR in the assement of myocardial injury caused by chemotherapy for breast cancer.
[Keywords] breast cancer;cardiac magnetic resonance;anthracycline;cardiotoxicity;chemotherapy

CHEN Shuangyan1   FU Bing2*   SU Chunyan2   YANG Zhi2  

1 College of Medicine and Life Sciences,Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China

2 Department of Radiology, Chengdu Fifth People's Hospital, Chengdu 611130, China

Corresponding author: FU B, E-mail: 1125173278@qq.com

Conflicts of interest   None.

Received  2025-02-24
Accepted  2025-04-10
DOI: 10.12015/issn.1674-8034.2025.04.029
Cite this article as: CHEN S Y, FU B, SU C Y, et al. Cardiac magnetic resonance in evaluating cardioxicity induced by anthracycline chemotherapy in breast cancer[J]. Chin J Magn Reson Imaging, 2025, 16(4): 180-185. DOI:10.12015/issn.1674-8034.2025.04.029.

[1]
The Society of Breast Cancer, China AntiCancer Association. Screening and early diagnosis of breast cancer in China: a practice guideline[J]. China Oncol, 2022, 32(4): 363-372. DOI: 10.19401/j.cnki.1007-3639.2022.04.010.
[2]
JASRA S, ANAMPA J. Anthracycline use for early stage breast cancer in the modern era: a review[J/OL]. Curr Treat Options Oncol, 2018, 19(6): 30 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/29752560/. DOI: 10.1007/s11864-018-0547-8.
[3]
MITCHELL J D, LAURIE M, XIA Q, et al. Risk profiles and incidence of cardiovascular events across different cancer types[J/OL]. ESMO Open, 2023, 8(6): 101830 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/37979325/. DOI: 10.1016/j.esmoop.2023.101830.
[4]
ROMITAN D M, RĂDULESCU D, BERINDAN-NEAGOE I, et al. Cardiomyopathies and arrhythmias induced by cancer therapies[J/OL]. Biomedicines, 2020, 8(11): 496 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/33198152/. DOI: 10.3390/biomedicines8110496.
[5]
BRADSHAW P T, STEVENS J, KHANKARI N, et al. Cardiovascular disease mortality among breast cancer survivors[J]. Epidemiology, 2016, 27(1): 6-13. DOI: 10.1097/EDE.0000000000000394.
[6]
O'QUINN R, FERRARI V A, DALY R, et al. Cardiac magnetic resonance in cardio-oncology: advantages, importance of expediency, and considerations to navigate pre-authorization[J]. JACC CardioOncol, 2021, 3(2): 191-200. DOI: 10.1016/j.jaccao.2021.04.011.
[7]
HOUBOIS C P, THAVENDIRANATHAN P, WINTERSPERGER B J. Cardiovascular magnetic resonance imaging: identifying the effects of cancer therapy[J]. J Thorac Imaging, 2020, 35(1): 12-25. DOI: 10.1097/RTI.0000000000000430.
[8]
LYON A R, LÓPEZ-FERNÁNDEZ T, COUCH L S, et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS)[J]. Eur Heart J, 2022, 43(41): 4229-4361. DOI: 10.1093/eurheartj/ehac244.
[9]
KIM J, HONG Y J, HAN K, et al. Chemotherapy-related cardiac dysfunction: quantitative cardiac magnetic resonance image parameters and their prognostic implications[J]. Korean J Radiol, 2023, 24(9): 838-848. DOI: 10.3348/kjr.2023.0095.
[10]
KWAN J M, ARBUNE A, HENRY M L, et al. Quantitative cardiovascular magnetic resonance findings and clinical risk factors predict cardiovascular outcomes in breast cancer patients[J/OL]. PLoS One, 2023, 18(5): e0286364 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/37252927/. DOI: 10.1371/journal.pone.0286364.
[11]
SCALIA I G, PATHANGEY G, ABDELNABI M, et al. Applications of artificial intelligence for the prediction and diagnosis of cancer therapy-related cardiac dysfunction in oncology patients[J/OL]. Cancers, 2025, 17(4): 605 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/40002200/. DOI: 10.3390/cancers17040605.
[12]
ZHANG J Q, SHEN H S. Advancements in CT and MRI for cancer therapy-related cardiotoxicity[J]. Chin J Med Imag, 2025, 33(2): 116-120. DOI: 10.3969/j.issn.1005-5185.2025.02.002.
[13]
FERREIRA DE SOUZA T, QUINAGLIA A C SILVA T, OSORIO COSTA F, et al. Anthracycline therapy is associated with cardiomyocyte atrophy and preclinical manifestations of heart disease[J]. JACC Cardiovasc Imaging, 2018, 11(8): 1045-1055. DOI: 10.1016/j.jcmg.2018.05.012.
[14]
GIANG M N, HAI N H, VO D T, et al. Superiority of left heart deformation in early anthracycline-related cardiac dysfunction detection[J/OL]. Open Heart, 2023, 10(2): e002493 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/38011990/. DOI: 10.1136/openhrt-2023-002493.
[15]
KIM M N, KIM S R, KIM H D, et al. Serial changes of layer-specific myocardial function according to chemotherapy regimen in patients with breast cancer[J/OL]. Eur Heart J Open, 2022, 2(4): oeac008 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/36117949/. DOI: 10.1093/ehjopen/oeac008.
[16]
FENG W M, WANG Q C, TAN Y, et al. Early detection of anthracycline-induced cardiotoxicity[J/OL]. Clin Chim Acta, 2025, 565: 120000 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/39401650/. DOI: 10.1016/j.cca.2024.120000.
[17]
HUANG J Q, WU R D, CHEN L Y, et al. Understanding anthracycline cardiotoxicity from mitochondrial aspect[J/OL]. Front Pharmacol, 2022, 13: 811406 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/35211017/. DOI: 10.3389/fphar.2022.811406.
[18]
FABIANI I, CHIANCA M, CIPOLLA C M, et al. Anthracycline-induced cardiomyopathy: risk prediction, prevention and treatment[J/OL]. Nat Rev Cardiol, 2025 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/39875555/. DOI: 10.1038/s41569-025-01126-1.
[19]
GULATI M, MULVAGH S L. The connection between the breast and heart in a woman: Breast cancer and cardiovascular disease[J]. Clin Cardiol, 2018, 41(2): 253-257. DOI: 10.1002/clc.22886.
[20]
BRADSHAW P T, STEVENS J, KHANKARI N, et al. Cardiovascular disease mortality among breast cancer survivors[J]. Epidemiology, 2016, 27(1): 6-13. DOI: 10.1097/EDE.0000000000000394.
[21]
BALAJI S, ANTONY A K, TONCHEV H, et al. Racial disparity in anthracycline-induced cardiotoxicity in breast cancer patients[J/OL]. Biomedicines, 2023, 11(8): 2286 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/37626782/. DOI: 10.3390/biomedicines11082286.
[22]
BHAGAT A, KLEINERMAN E S. Anthracycline-induced cardiotoxicity: causes, mechanisms, and prevention[J/OL]. Adv Exp Med Biol, 2020, 1257: 181-192 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/32483740/. DOI: 10.1007/978-3-030-43032-0_15.
[23]
GAO F Y, XU T, ZANG F N, et al. Cardiotoxicity of anticancer drugs: molecular mechanisms, clinical management and innovative treatment[J/OL]. Drug Des Devel Ther, 2024, 18: 4089-4116 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/39286288/. DOI: 10.2147/DDDT.S469331.
[24]
HUANG X, JIANG M P, BAO S N, et al. Update and interpretation of the 2021 guidelines for the diagnosis and treatment of breast cancer by Chinese society of clinical oncology (CSCO)[J]. Chin J Surg Oncol, 2021, 13(3): 209-215. DOI: 10.3969/j.issn.1674-4136.2021.03.001.
[25]
MURG S I, MATIȘ L, MOLDOVAN A F, et al. Association between advanced TNM stages and increased risk of cardiac dysfunction in patients with LVEF < 50[J/OL]. Medicina, 2025, 61(2): 301 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/40005419/. DOI: 10.3390/medicina61020301.
[26]
O'BRIEN A T, GIL K E, VARGHESE J, et al. T2 mapping in myocardial disease: a comprehensive review[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 33 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/35659266/. DOI: 10.1186/s12968-022-00866-0.
[27]
FLETT A S, HAYWARD M P, ASHWORTH M T, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans[J]. Circulation, 2010, 122(2): 138-144. DOI: 10.1161/CIRCULATIONAHA.109.930636.
[28]
GALÁN-ARRIOLA C, VÍLCHEZ-TSCHISCHKE J P, LOBO M, et al. Coronary microcirculation damage in anthracycline cardiotoxicity[J]. Cardiovasc Res, 2022, 118(2): 531-541. DOI: 10.1093/cvr/cvab053.
[29]
BOOTH L K, REDGRAVE R E, FOLARANMI O, et al. Anthracycline-induced cardiotoxicity and senescence[J/OL]. Front Aging, 2022, 3: 1058435 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/36452034/. DOI: 10.3389/fragi.2022.1058435.
[30]
ECKMAN D M, BRANDON STACEY R, ROWE R, et al. Weekly doxorubicin increases coronary arteriolar wall and adventitial thickness[J/OL]. PLoS One, 2013, 8(2): e57554 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/23437398/. DOI: 10.1371/journal.pone.0057554.
[31]
AHARON I BEN, JOSEPH H BAR, TZABARI M, et al. Doxorubicin-induced vascular toxicity: targeting potential pathways may reduce procoagulant activity[J/OL]. PLoS One, 2013, 8(9): e75157 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/24073244/. DOI: 10.1371/journal.pone.0075157.
[32]
NAREZKINA A, NARAYAN H K, ZEMLJIC-HARPF A E. Molecular mechanisms of anthracycline cardiovascular toxicity[J]. Clin Sci, 2021, 135(10): 1311-1332. DOI: 10.1042/CS20200301.
[33]
ÖZKAN U, GÜRDOĞAN M. Comparison of myocardial perfusion scintigraphy and coronary angiography results in breast cancer patients treated with radiotherapy[J]. Curr Oncol, 2023, 30(5): 4575-4585. DOI: 10.3390/curroncol30050346.
[34]
LI J J, ZHAO J Q, LEI Y H, et al. Coronary atherosclerotic disease and cancer: risk factors and interrelation[J/OL]. Front Cardiovasc Med, 2022, 9: 821267 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/35463783/. DOI: 10.3389/fcvm.2022.821267.
[35]
JIANG C Q, XU H Y, WU Y J. Effect of chemotherapy in tumor on coronary arteries: Mechanisms and management[J/OL]. Life Sci, 2024, 338: 122377 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/38135114/. DOI: 10.1016/j.lfs.2023.122377.
[36]
YANG M X, LI Q L, WANG D Q, et al. Myocardial microvascular function assessed by CMR first-pass perfusion in patients treated with chemotherapy for gynecologic malignancies[J]. Eur Radiol, 2022, 32(10): 6850-6858. DOI: 10.1007/s00330-022-08823-2.
[37]
BLUM S M, ZLOTOFF D A, SMITH N P, et al. Immune responses in checkpoint myocarditis across heart, blood and tumour[J]. Nature, 2024, 636(8041): 215-223. DOI: 10.1038/s41586-024-08105-5.
[38]
PAN J A, PATEL A R. The role of multimodality imaging in cardiomyopathy[J]. Curr Cardiol Rep, 2024, 26(7): 689-703. DOI: 10.1007/s11886-024-02068-9.
[39]
THAVENDIRANATHAN P, SHALMON T, FAN C S, et al. Comprehensive cardiovascular magnetic resonance tissue characterization and cardiotoxicity in women with breast cancer[J]. JAMA Cardiol, 2023, 8(6): 524-534. DOI: 10.1001/jamacardio.2023.0494.
[40]
GALÁN-ARRIOLA C, LOBO M, VÍLCHEZ-TSCHISCHKE J P, et al. Serial magnetic resonance imaging to identify early stages of anthracycline-induced cardiotoxicity[J]. J Am Coll Cardiol, 2019, 73(7): 779-791. DOI: 10.1016/j.jacc.2018.11.046.
[41]
HU Y R, MA P S, CHEN L, et al. Multi-parameter cardiac magnetic resonance imaging detects anthracycline-induced cardiotoxicity in rabbits model[J/OL]. Heliyon, 2023, 9(11): e21845 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/38058655/. DOI: 10.1016/j.heliyon.2023.e21845.
[42]
PARK H S, HONG Y J, HAN K, et al. Ultrahigh-field cardiovascular magnetic resonance T1 and T2 mapping for the assessment of anthracycline-induced cardiotoxicity in rat models: validation against histopathologic changes[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 76 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/34134713/. DOI: 10.1186/s12968-021-00767-8.
[43]
NOEL C V, RAINUSSO N, ROBERTSON M, et al. Early detection of myocardial changes with and without dexrazoxane using serial magnetic resonance imaging in a pre-clinical mouse model[J/OL]. Cardiooncology, 2021, 7(1): 23 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/34134789/. DOI: 10.1186/s40959-021-00109-8.
[44]
HARRIES I, BIGLINO G, FORD K, et al. Prospective multiparametric CMR characterization and microRNA profiling of anthracycline cardiotoxicity: a pilot translational study[J/OL]. Int J Cardiol Heart Vasc, 2022, 43: 101134 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/36389268/. DOI: 10.1016/j.ijcha.2022.101134.
[45]
MUEHLBERG F, KORNFELD M, ZANGE L, et al. Early myocardial oedema can predict subsequent cardiomyopathy in high-dose anthracycline therapy[J]. ESC Heart Fail, 2023, 10(1): 616-627. DOI: 10.1002/ehf2.14232.
[46]
ZHANG L, WANG Y, MENG W J, et al. Cardiac safety analysis of anti-HER2-targeted therapy in early breast cancer[J/OL]. Sci Rep, 2022, 12(1): 14312 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/35995984/. DOI: 10.1038/s41598-022-18342-1.
[47]
HU Y R, SHANG Y N, MA P S, et al. Effect of chemotherapy combined with targeted therapy on cardiac structure and function in breast cancer patients during treatment using magnetic resonance imaging[J]. Chin J Med Imag, 2022, 30(6): 541-547. DOI: 10.3969/j.issn.1005-5185.2022.06.003.
[48]
XU S F, WANG Z X, ZHAO S, et al. Value of cardiac magnetic resonance feature tracking technique in evaluating cardiac function during chemotherapy in breast cancer patients[J]. Chin J Magn Reson Imag, 2024, 15(5): 87-93. DOI: 10.12015/issn.1674-8034.2024.05.015.
[49]
KERSTEN J, FINK V, KERSTEN M, et al. CMR reveals myocardial damage from cardiotoxic oncologic therapies in breast cancer patients[J]. Int J Cardiovasc Imaging, 2024, 40(2): 225-235. DOI: 10.1007/s10554-023-02996-7.
[50]
WEI Z X, XU H C, CHEN B X, et al. Early detection of anthracycline-induced cardiotoxicity using [68 Ga] Ga-FAPI-04 imaging[J]. Eur J Nucl Med Mol Imaging, 2024, 51(8): 2204-2215. DOI: 10.1007/s00259-024-06673-2.
[51]
GRÄNI C, EICHHORN C, BIÈRE L, et al. Prognostic value of cardiac magnetic resonance tissue characterization in risk stratifying patients with suspected myocarditis[J]. J Am Coll Cardiol, 2017, 70(16): 1964-1976. DOI: 10.1016/j.jacc.2017.08.050.
[52]
FALLAH-RAD N, WALKER J R, WASSEF A, et al. The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy[J]. J Am Coll Cardiol, 2011, 57(22): 2263-2270. DOI: 10.1016/j.jacc.2010.11.063.
[53]
MOHAMED A A, ELMANCY L Y, ABULOLA S M, et al. Assessment of native myocardial T1 mapping for early detection of anthracycline-induced cardiotoxicity in patients with cancer: a systematic review and meta-analysis[J]. Cardiovasc Toxicol, 2024, 24(6): 563-575. DOI: 10.1007/s12012-024-09866-1.
[54]
BHATIA S. Genetics of anthracycline cardiomyopathy in cancer survivors: JACC: CardioOncology state-of-the-art review[J]. JACC CardioOncol, 2020, 2(4): 539-552. DOI: 10.1016/j.jaccao.2020.09.006.
[55]
ZHANG M L, YANG H G, XU C C, et al. Risk factors for anthracycline-induced cardiotoxicity in breast cancer treatment: a meta-analysis[J/OL]. Front Oncol, 2022, 12: 899782 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/35785172/. DOI: 10.3389/fonc.2022.899782.
[56]
MARTIN-GARCIA A, DIAZ-PELAEZ E, LOPEZ-CORRAL L, et al. T2 mapping identifies early anthracycline-induced cardiotoxicity in elderly patients with cancer[J]. JACC Cardiovasc Imaging, 2020, 13(7): 1630-1632. DOI: 10.1016/j.jcmg.2020.01.017.
[57]
ANKER M S, RASHID A M, BUTLER J, et al. Cardiac wasting in patients with cancer[J]. Basic Res Cardiol, 2025, 120(1): 25-34. DOI: 10.1007/s00395-024-01079-5.
[58]
HONG Y J, HAN K, LEE H J, et al. Assessment of feasibility and interscan variability of short-time cardiac MRI for cardiotoxicity evaluation in breast cancer[J/OL]. Radiol Cardiothorac Imaging, 2024, 6(1): e220229 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/38329404/. DOI: 10.1148/ryct.220229.
[59]
MABUDIAN L, JORDAN J H, BOTTINOR W, et al. Cardiac MRI assessment of anthracycline-induced cardiotoxicity[J/OL]. Front Cardiovasc Med, 2022, 9: 903719 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/36237899/. DOI: 10.3389/fcvm.2022.903719.
[60]
CANNIZZARO M T, INSERRA M C, PASSANITI G, et al. Role of advanced cardiovascular imaging in chemotherapy-induced cardiotoxicity[J/OL]. Heliyon, 2023, 9(4): e15226 [2025-02-23]. https://pubmed.ncbi.nlm.nih.gov/37095987/. DOI: 10.1016/j.heliyon.2023.e15226.
[61]
BOTTINOR W, TRANKLE C R, GREGORY HUNDLEY W. The role of cardiovascular MRI in cardio-oncology[J]. Heart Fail Clin, 2021, 17(1): 121-133. DOI: 10.1016/j.hfc.2020.08.009.

PREV Research progress on the application of intravoxel incoherent motion in myocardial microcirculation
NEXT Research progress in MRI diagnosis of breast non-mass enhancement lesions
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn