Share:
Share this content in WeChat
X
Review
Progress in the application of radiomics in the comprehensive treatment of advanced cervical cancer
XIONG LingLing  HUA Li  CHEN ShaoJun 

Cite this article as: XIONG L L, HUA L, CHEN S J. Progress in the application of radiomics in the comprehensive treatment of advanced cervical cancer[J]. Chin J Magn Reson Imaging, 2025, 16(4): 208-213. DOI:10.12015/issn.1674-8034.2025.04.034.


[Abstract] Cervical cancer starts insidiously and is mostly found in the advanced stage. The comprehensive treatment modes of advanced cervical cancer mainly include two categories related to surgery and radiotherapy. However, current guidelines remain controversial regarding the appropriate patient population and survival benefits of commonly used treatment strategies, such as neoadjuvant chemotherapy (NACT) before surgery or radical chemoradiotherapy and adjuvant chemotherapy (ACT) after surgery or radical chemoradiotherapy, and lack of clear consensus recommendations. Radiomics can extract high-throughput imaging features from different imaging modalities, quantitatively assess tumor lesions, aid in identifying beneficiary populations and evaluating treatment efficacy and survival outcomes. It may provide a clinical decision-making basis for the individualized treatment of comprehensive models in advanced cervical cancer. This article reviews the application of radiomics in the comprehensive treatment models associated with surgery and radiotherapy for advanced cervical cancer, aiming to offer new ideas and strategies for its comprehensive treatment.
[Keywords] advanced cervical cancer;neoadjuvant chemotherapy;surgery;concurrent chemoradiotherapy;adjuvant chemotherapy;magnetic resonance imaging;radiomics

XIONG LingLing1, 2   HUA Li1   CHEN ShaoJun1*  

1 Department of Oncology, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545005, China

2 Guangxi Medical University, Nanning 530021, China

Corresponding author: CHEN S J, E-mail: chenshaojun388@163.com

Conflicts of interest   None.

Received  2024-12-01
Accepted  2025-04-10
DOI: 10.12015/issn.1674-8034.2025.04.034
Cite this article as: XIONG L L, HUA L, CHEN S J. Progress in the application of radiomics in the comprehensive treatment of advanced cervical cancer[J]. Chin J Magn Reson Imaging, 2025, 16(4): 208-213. DOI:10.12015/issn.1674-8034.2025.04.034.

[1]
XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J, 2022, 135(5): 584-590. DOI: 10.1097/CM9.0000000000002108.
[2]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[3]
YE Q J, YANG Y B, TANG X R, et al. Neoadjuvant chemotherapy followed by radical surgery versus radiotherapy (with or without chemotherapy) in patients with stage IB2, IIA, or IIB cervical cancer: A systematic review and meta-analysis[J/OL]. Dis Markers, 2020, 2020: 7415056 [2025-03-19]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7403931/. DOI: 10.1155/2020/7415056.
[4]
HU Y J, HAN Y Y, SHEN Y M, et al. Neoadjuvant chemotherapy for patients with international federation of gynecology and obstetrics stages IB3 and IIA2 cervical cancer: a multicenter prospective trial[J/OL]. BMC Cancer, 2022, 22(1): 1270 [2025-03-19]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9724322/. DOI: 10.1186/s12885-022-10355-3.
[5]
LI F H, MEI F, YIN S S, et al. Improving the efficacy and safety of concurrent chemoradiotherapy by neoadjuvant chemotherapy: a randomized controlled study of locally advanced cervical cancer with a large tumor[J/OL]. J Gynecol Oncol, 2024, 35(1): e10 [2025-03-19]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10792203/. DOI: 10.3802/jgo.2024.35.e10.
[6]
COSTA S C S DA, BONADIO R C, GABRIELLI F C G, et al. Neoadjuvant chemotherapy with cisplatin and gemcitabine followed by chemoradiation versus chemoradiation for locally advanced cervical cancer: a randomized phase II trial[J]. J Clin Oncol, 2019, 37(33): 3124-3131. DOI: 10.1200/JCO.19.00674.
[7]
LIU H N, MA X, SUN C Y, et al. Concurrent chemoradiotherapy followed by adjuvant chemotherapy versus concurrent chemoradiotherapy alone in locally advanced cervical cancer: A systematic review and meta-analysis[J/OL]. Front Oncol, 2022, 12: 997030 [2025-03-19]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9768423/. DOI: 10.3389/fonc.2022.997030.
[8]
LEE K B, LEE J M, KIM Y S. Outcomes of adjuvant chemotherapy only after radical surgery for stage IIIC cervical cancer patients (1101)[J/OL]. Gynecol Oncol, 2023, 176: S78 [2025-03-19]. https://www.gynecologiconcology-online.net/article/S0090-8258(23)00823-5/fulltext. DOI: 10.1016/j.ygyno.2023.06.023.
[9]
KENTER G G, GREGGI S, VERGOTE I, et al. Randomized phase III study comparing neoadjuvant chemotherapy followed by surgery versus chemoradiation in stage IB2-IIB cervical cancer: EORTC-55994[J]. J Clin Oncol, 2023, 41(32): 5035-5043. DOI: 10.1200/JCO.22.02852.
[10]
SUH Y J, LEE D H, LEE H J, et al. Neoadjuvant chemotherapy followed by concurrent chemoradiation versus adjuvant chemotherapy following concurrent chemoradiation for locally advanced cervical cancer: a network meta-analysis[J]. Cancers, 2025, 17(2): 223. DOI: 10.3390/cancers17020223.
[11]
RUSSO L, CHARLES-DAVIES D, BOTTAZZI S, et al. Radiomics for clinical decision support in radiation oncology[J/OL]. Clin Oncol, 2024, 36(8): e269-e281 [2025-03-19]. https://pubmed.ncbi.nlm.nih.gov/38548581/. DOI: 10.1016/j.clon.2024.03.003.
[12]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[13]
BIZZARRI N, RUSSO L, DOLCIAMI M, et al. Radiomics systematic review in cervical cancer: gynecological oncologists' perspective[J]. Int J Gynecol Cancer, 2023, 33(10): 1522-1541. DOI: 10.1136/ijgc-2023-004589.
[14]
HATT M, LUCIA F, SCHICK U, et al. Multicentric validation of radiomics findings: challenges and opportunities[J]. EBioMedicine, 2019, 47: 20-21. DOI: 10.1016/j.ebiom.2019.08.054.
[15]
STANZIONE A, CUOCOLO R, UGGA L, et al. Oncologic imaging and radiomics: a walkthrough review of methodological challenges[J/OL]. Cancers, 2022, 14(19): 4871 [2025-03-19]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9562166/. DOI: 10.3390/cancers14194871.
[16]
FREI E. Clinical cancer research: an embattled species[J]. Cancer, 1982, 50(10): 1979-1992. DOI: 10.1002/1097-0142(19821115)50:10<1979::aid-cncr2820501002>3.0.co;2-d.
[17]
TIAN X, SUN C X, LIU Z Y, et al. Prediction of response to preoperative neoadjuvant chemotherapy in locally advanced cervical cancer using multicenter CT-based radiomic analysis[J/OL]. Front Oncol, 2020, 10: 77 [2025-03-19]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7010718/. DOI: 10.3389/fonc.2020.00077.
[18]
ZHANG Y J, WU C, XIAO Z B, et al. A deep learning radiomics nomogram to predict response to neoadjuvant chemotherapy for locally advanced cervical cancer: a two-center study[J]. Diagnostics, 2023, 13(6): 1073. DOI: 10.3390/diagnostics13061073.
[19]
AI C H, ZHANG L, DING W, et al. A nomogram-based optimized Radscore for preoperative prediction of lymph node metastasis in patients with cervical cancer after neoadjuvant chemotherapy[J/OL]. Front Oncol, 2023, 13: 1117339 [2025-03-19]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10466037/. DOI: 10.3389/fonc.2023.1117339.
[20]
MCCORMACK M, EMINOWICZ G, GALLARDO D, et al. Induction chemotherapy followed by standard chemoradiotherapy versus standard chemoradiotherapy alone in patients with locally advanced cervical cancer (GCIG INTERLACE): an international, multicentre, randomised phase 3 trial[J]. Lancet, 2024, 404(10462): 1525-1535. DOI: 10.1016/S0140-6736(24)01438-7.
[21]
WANG Y R, ZHANG H W, WANG H, et al. Development of a neoadjuvant chemotherapy efficacy prediction model for nasopharyngeal carcinoma integrating magnetic resonance radiomics and pathomics: a multi-center retrospective study[J/OL]. BMC Cancer, 2024, 24(1): 1501 [2025-03-19]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11619272/. DOI: 10.1186/s12885-024-13235-0.
[22]
WANG S X, YANG Y, XIE H, et al. Radiomics-based nomogram guides adaptive de-intensification in locoregionally advanced nasopharyngeal carcinoma following induction chemotherapy[J]. Eur Radiol, 2024, 34(10): 6831-6842. DOI: 10.1007/s00330-024-10678-8.
[23]
ROSE P G, JAVA J, WHITNEY C W, et al. Nomograms predicting progression-free survival, overall survival, and pelvic recurrence in locally advanced cervical cancer developed from an analysis of identifiable prognostic factors in patients from NRG oncology/gynecologic oncology group randomized trials of chemoradiotherapy[J]. J Clin Oncol, 2015, 33(19): 2136-2142. DOI: 10.1200/JCO.2014.57.7122.
[24]
JEONG S, YU H, PARK S H, et al. Comparing deep learning and handcrafted radiomics to predict chemoradiotherapy response for locally advanced cervical cancer using pretreatment MRI[J/OL]. Sci Rep, 2024, 14(1): 1180 [2025-03-19]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10786874/. DOI: 10.1038/s41598-024-51742-z.
[25]
CEPERO A, YANG Y D, YOUNG L, et al. Longitudinal FDG-PET radiomics for early prediction of treatment response to chemoradiation in locally advanced cervical cancer: A pilot study[J/OL]. Cancers, 2024, 16(22): 3813 [2025-03-19]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11592998/. DOI: 10.3390/cancers16223813.
[26]
LUCIA F, VISVIKIS D, DESSEROIT M C, et al. Prediction of outcome using pretreatment 18F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy[J]. Eur J Nucl Med Mol Imaging, 2018, 45(5): 768-786. DOI: 10.1007/s00259-017-3898-7.
[27]
LUCIA F, VISVIKIS D, VALLIÈRES M, et al. External validation of a combined PET and MRI radiomics model for prediction of recurrence in cervical cancer patients treated with chemoradiotherapy[J]. Eur J Nucl Med Mol Imaging, 2019, 46(4): 864-877. DOI: 10.1007/s00259-018-4231-9.
[28]
WANG X, SU R X, LI L R, et al. Machine learning-based radiomics for predicting outcomes in cervical cancer patients undergoing concurrent chemoradiotherapy[J/OL]. Comput Biol Med, 2024, 177: 108593 [2025-03-19]. https://pubmed.ncbi.nlm.nih.gov/38801795/. DOI: 10.1016/j.compbiomed.2024.108593.
[29]
LUCIA F, BOURBONNE V, VISVIKIS D, et al. Radiomics analysis of 3D dose distributions to predict toxicity of radiotherapy for cervical cancer[J/OL]. J Pers Med, 2021, 11(5): 398 [2025-03-19]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8151048/. DOI: 10.3390/jpm11050398.
[30]
LORUSSO D, XIANG Y, HASEGAWA K, et al. Pembrolizumab or placebo with chemoradiotherapy followed by pembrolizumab or placebo for newly diagnosed, high-risk, locally advanced cervical cancer (ENGOT-cx11/GOG-3047/KEYNOTE-A18): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet, 2024, 404(10460): 1321-1332. DOI: 10.1016/S0140-6736(24)01808-7.
[31]
KOUHEN F, HOUSSAINI M S. CALLA trial: immunotherapy in locally advanced cervical cancer[J/OL]. Lancet Oncol, 2024, 25(3): e94 [2025-03-19]. https://pubmed.ncbi.nlm.nih.gov/38423062/. DOI: 10.1016/S1470-2045(23)00648-4.
[32]
LI J Y, CAO Y J, LIU Y C, et al. Multiomics profiling reveals the benefits of gamma-delta (γδ) T lymphocytes for improving the tumor microenvironment, immunotherapy efficacy and prognosis in cervical cancer[J]. J Immunother Cancer, 2024, 12(1): e008355. DOI: 10.1136/jitc-2023-008355.
[33]
HUANG K, HUANG X H, ZENG C B, et al. Radiomics signature for dynamic changes of tumor-infiltrating CD8+ T cells and macrophages in cervical cancer during chemoradiotherapy[J/OL]. Cancer Imaging, 2024, 24(1): 54 [2025-03-19]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11036574/. DOI: 10.1186/s40644-024-00680-0.
[34]
VAN KOL K G, EBISCH R F, VAN DER AA M, et al. The prognostic value of the presence of pelvic and/or Para-aortic lymph node metastases in cervical cancer patients; the influence of the new FIGO classification (stage IIIC)[J]. Gynecol Oncol, 2023, 171: 9-14. DOI: 10.1016/j.ygyno.2023.01.023.
[35]
RUSSO L, PASCIUTO T, LUPINELLI M, et al. The value of MRI in quantification of parametrial invasion and association with prognosis in locally advanced cervical cancer: the "PLACE" study[J]. Eur Radiol, 2024, 34(6): 4003-4013. DOI: 10.1007/s00330-023-10443-3.
[36]
ZHANG J N, JIANG P, TU Y, et al. Significance of the number of intermediate-risk factors in cervical cancer patients treated with radical hysterectomy: a retrospective study of 976 patients[J]. J Invest Surg, 2022, 35(5): 1098-1105. DOI: 10.1080/08941939.2021.2013578.
[37]
CORBEAU A, HEEMSBERGEN W D, KUIPERS S C, et al. Predictive factors for toxicity after primary chemoradiation for locally advanced cervical cancer: a systematic review[J]. Int J Radiat Oncol Biol Phys, 2024, 119(1): 127-142. DOI: 10.1016/j.ijrobp.2023.11.010.
[38]
PERRUCCI E, MACCHIA G, CERROTTA A, et al. Prevention and management of radiotherapy-related toxicities in gynecological malignancies. Position paper on behalf of AIRO (Italian Association of Radiotherapy and Clinical Oncology)[J]. Radiol Med, 2024, 129(9): 1329-1351. DOI: 10.1007/s11547-024-01844-5.
[39]
LUCIA F, BOURBONNE V, PLEYERS C, et al. Multicentric development and evaluation of 18F-FDG PET/CT and MRI radiomics models to predict Para-aortic lymph node involvement in locally advanced cervical cancer[J]. Eur J Nucl Med Mol Imaging, 2023, 50(8): 2514-2528. DOI: 10.1007/s00259-023-06180-w.
[40]
ZHANG Z H, WAN X J, LEI X Y, et al. Intra- and peri-tumoral MRI radiomics features for preoperative lymph node metastasis prediction in early-stage cervical cancer[J/OL]. Insights Imaging, 2023, 14(1): 65 [2025-03-19]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10105820/. DOI: 10.1186/s13244-023-01405-w.
[41]
XIAO M L, FU L, WEI Y, et al. Intratumoral and peritumoral MRI radiomics nomogram for predicting parametrial invasion in patients with early-stage cervical adenocarcinoma and adenosquamous carcinoma[J]. Eur Radiol, 2024, 34(2): 852-862. DOI: 10.1007/s00330-023-10042-2.
[42]
WANG T, GAO T T, GUO H, et al. Preoperative prediction of parametrial invasion in early-stage cervical cancer with MRI-based radiomics nomogram[J]. Eur Radiol, 2020, 30(6): 3585-3593. DOI: 10.1007/s00330-019-06655-1.
[43]
WU Y, WANG S X, CHEN Y Q, et al. A multicenter study on preoperative assessment of lymphovascular space invasion in early-stage cervical cancer based on multimodal MR radiomics[J]. J Magn Reson Imaging, 2023, 58(5): 1638-1648. DOI: 10.1002/jmri.28676.
[44]
HUANG G, CUI Y Q, WANG P, et al. Multi-parametric magnetic resonance imaging-based radiomics analysis of cervical cancer for preoperative prediction of lymphovascular space invasion[J/OL]. Front Oncol, 2022, 11: 663370 [2025-03-19]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8790703/. DOI: 10.3389/fonc.2021.663370.
[45]
REN J, LI Y, YANG J J, et al. MRI-based radiomics analysis improves preoperative diagnostic performance for the depth of stromal invasion in patients with early stage cervical cancer[J/OL]. Insights Imaging, 2022, 13(1): 17 [2025-03-19]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8800977/. DOI: 10.1186/s13244-022-01156-0.
[46]
YAN H W, HUANG G T, YANG Z H, et al. Machine learning-based multiparametric magnetic resonance imaging radiomics model for preoperative predicting the deep stromal invasion in patients with early cervical cancer[J]. J Imaging Inform Med, 2024, 37(1): 230-246. DOI: 10.1007/s10278-023-00906-w.
[47]
WORMALD B W, DORAN S J, IND T E, et al. Radiomic features of cervical cancer on T2-and diffusion-weighted MRI: prognostic value in low-volume tumors suitable for trachelectomy[J]. Gynecol Oncol, 2020, 156(1): 107-114. DOI: 10.1016/j.ygyno.2019.10.010.
[48]
MILESHKIN L R, MOORE K N, BARNES E H, et al. Adjuvant chemotherapy following chemoradiotherapy as primary treatment for locally advanced cervical cancer versus chemoradiotherapy alone (OUTBACK): an international, open-label, randomised, phase 3 trial[J]. Lancet Oncol, 2023, 24(5): 468-482. DOI: 10.1016/S1470-2045(23)00147-X.
[49]
TENG X Z, ZHANG J, HAN X Y, et al. Explainable machine learning via intra-tumoral radiomics feature mapping for patient stratification in adjuvant chemotherapy for locoregionally advanced nasopharyngeal carcinoma[J]. Radiol Med, 2023, 128(7): 828-838. DOI: 10.1007/s11547-023-01650-5.
[50]
WEI G C, JIANG P, TANG Z C, et al. MRI radiomics in overall survival prediction of local advanced cervical cancer patients tread by adjuvant chemotherapy following concurrent chemoradiotherapy or concurrent chemoradiotherapy alone[J]. Magn Reson Imaging, 2022, 91: 81-90. DOI: 10.1016/j.mri.2022.05.019.

PREV Advances in non-Gaussian diffusion models for cervical cancer
NEXT Research progress on bone marrow magnetic resonance imaging of aplastic anemia
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn