Share:
Share this content in WeChat
X
Review
Research progress on bone marrow magnetic resonance imaging of aplastic anemia
CUI Xiaotian  GAO Mingjie  CHEN Tao  FU Qinghua  ZHANG Niulin  HAN Jihong  YOU Yilin  LI Zheyuan  WANG Jinhuan 

Cite this article as: CUI X T, GAO M J, CHEN T, et al. Research progress on bone marrow magnetic resonance imaging of aplastic anemia[J]. Chin J Magn Reson Imaging, 2025, 16(4): 214-220. DOI:10.12015/issn.1674-8034.2025.04.035.


[Abstract] Aplastic anemia (AA) is a bone marrow hematopoietic failure syndrome characterized by significant reduction in whole blood cells, low bone marrow proliferation capacity, and gradual replacement of hematopoietic tissue by adipose tissue. As a blood system disease that seriously threatens the life and health of patients, the current diagnosis of AA is still limited to exclusionary diagnosis. Finding clear and specific diagnostic criteria and biomarkers is still an important issue that needs to be addressed in the field of AA research. Accurate diagnosis and effective evaluation of the condition are of great significance for optimizing treatment plans and improving the prognosis of AA patients. MRI as a non-invasive and high-resolution imaging detection method, can effectively identify physiological and pathological changes in bone marrow based on different features provided by different sequences used, and analyze the internal structure of bone marrow. This detection method can effectively avoid the trauma and limitations of bone marrow puncture and other examinations. This article reviews the various applications of MRI in the field of bone marrow imaging research for AA, including the evaluation of AA lesions, determination of disease classification, dynamic monitoring of treatment efficacy, and differential diagnosis with other related hematological diseases. The aim is to provide reliable imaging theoretical basis for further in-depth research on the pathological basis of AA.
[Keywords] aplastic anemia;magnetic resonance imaging;bone marrow;diagnosis;imaging

CUI Xiaotian1   GAO Mingjie2   CHEN Tao1   FU Qinghua1   ZHANG Niulin1   HAN Jihong1   YOU Yilin1   LI Zheyuan1   WANG Jinhuan2*  

1 Graduate School of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China

2 Department of Hematology, the First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China

Corresponding author: WANG J H, E-mail: wjh_0304@163.com

Conflicts of interest   None.

Received  2024-12-27
Accepted  2025-04-10
DOI: 10.12015/issn.1674-8034.2025.04.035
Cite this article as: CUI X T, GAO M J, CHEN T, et al. Research progress on bone marrow magnetic resonance imaging of aplastic anemia[J]. Chin J Magn Reson Imaging, 2025, 16(4): 214-220. DOI:10.12015/issn.1674-8034.2025.04.035.

[1]
GIUDICE V, SELLERI C. Aplastic Anemia: pathophysiology[J]. Semin Hematol, 2022, 59(1): 13-20. DOI: 10.1053/j.seminhematol.2021.12.002.
[2]
JAVAN M R, SAKI N, MOGHIMIAN-BOROUJENI B. Aplastic Anemia, cellular and molecular aspects[J]. Cell Biol Int, 2021, 45(12): 2395-2402. DOI: 10.1002/cbin.11689.
[3]
VAHT K, GÖRANSSON M, CARLSON K, et al. Incidence and outcome of acquired aplastic Anemia: real-world data from patients diagnosed in Sweden from 2000-2011[J]. Haematologica, 2017, 102(10): 1683-1690. DOI: 10.3324/haematol.2017.169862.
[4]
LI Y, ZHANG S C, XIE C, et al. Literature analysis of aplastic Anemia/pure red cell aplasia induced by pembrolizumab[J]. China Pharm, 2025, 36(6): 737-741.
[5]
NORASETTHADA L, WONGKHANTEE S, CHAIPOKAM J, et al. Adult aplastic Anemia in Thailand: incidence and treatment outcome from a prospective nationwide population-based study[J]. Ann Hematol, 2021, 100(10): 2443-2452. DOI: 10.1007/s00277-021-04566-0.
[6]
DEZERN A E, CHURPEK J E. Approach to the diagnosis of aplastic Anemia[J]. Blood Adv, 2021, 5(12): 2660-2671. DOI: 10.1182/bloodadvances.2021004345.
[7]
VILANOVA C, MARTÍN-NOGUEROL T, GARCÍA-FIGUEIRAS R, et al. Bone marrow magnetic resonance imaging (MRI): morphological and functional features from reconversion to infiltration[J]. Quant Imaging Med Surg, 2024, 14(11): 7969-7982. DOI: 10.21037/qims-23-1678.
[8]
XIE S Y. T1WI observation and quantitative analysis of slope bone marrow transformation in normal children[D]. Gannan Medical University, 2023. DOI: 10.27959/d.cnki.ggnyx.2023.000114.
[9]
SAIFUDDIN A, TYLER P, RAJAKULASINGAM R. Imaging of bone marrow pitfalls with emphasis on MRI[J/OL]. Br J Radiol, 2023, 96(1142): 20220063 [2025-04-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9975530/. DOI: 10.1259/bjr.20220063.
[10]
SASIPONGANAN C, YAN K, PEZESHK P, et al. Advanced MR imaging of bone marrow: quantification of signal alterations on T1-weighted Dixon and T2-weighted Dixon sequences in red marrow, yellow marrow, and pathologic marrow lesions[J]. Skeletal Radiol, 2020, 49(4): 541-548. DOI: 10.1007/s00256-019-03303-z.
[11]
ZHU Z M, LI H, CHEN Y, et al. Diagnostic efficiency of MRI STIR sequence for knee cartilage injury[J]. Chin J CT MRI, 2023, 21(11): 150-152. DOI: 10.3969/j.issn.1672-5131.2023.11.04.
[12]
ZADIG P, VON BRANDIS E, ORDING MÜLLER L S, et al. Pediatric whole-body magnetic resonance imaging: comparison of STIR and T2 Dixon sequences in the detection and grading of high signal bone marrow changes[J]. Eur Radiol, 2023, 33(7): 5045-5053. DOI: 10.1007/s00330-023-09413-6.
[13]
SONG Y R, HUANG Z K, LONG L L, et al. MRI study of bone marrow in aplastic Anemia[J]. Chin J Radiol, 2001, 35(6): 406-409. DOI: 10.3760/j.issn:1005-1201.2001.06.002.
[14]
CHIARILLI M G, DELLI PIZZI A, MASTRODICASA D, et al. Bone marrow magnetic resonance imaging: physiologic and pathologic findings that radiologist should know[J]. Radiol Med, 2021, 126(2): 264-276. DOI: 10.1007/s11547-020-01239-2.
[15]
YE L L. Exploration of continuous quantitative evaluation method of bone damage in multiple myeloma and its application in curative effect evaluation[D]. Nanchang: Nanchang University, 2022. DOI: 10.27232/d.cnki.gnchu.2022.000628.
[16]
YANG X W, BAI Y L, GUO H H, et al. Evaluating and monitoring bone marrow hypoplasia in adults with aplastic Anemia via high-resolution iliac magnetic resonance imaging in the current era[J/OL]. Medicine, 2019, 98(49): e18214 [2025-04-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6919526/. DOI: 10.1097/md.0000000000018214.
[17]
LI X, HUANG W, HOLMES J H. Dynamic contrast-enhanced (DCE) MRI[J]. Magn Reson Imaging Clin N Am, 2024, 32(1): 47-61. DOI: 10.1016/j.mric.2023.09.001.
[18]
LU X X, SONG Y R, REN H, et al. Magnetic resonance imaging manifestations and 1H-magnetic resonance spectroscopy features of lumbar bone marrow in patients with aplastic Anemia[J]. Guangxi Med J, 2021, 43(1): 43-46, 95. DOI: 10.11675/j.issn.0253-4304.2021.01.11.
[19]
OHNO Y, UEDA T, NOMURA M, et al. Proton density fat fraction quantification (PD-FFQ): capability for hematopoietic ability assessment and aplastic anemaia diagnosis of adults[J/OL]. Magn Reson Imag, 2024, 114: 110240 [2025-04-01]. https://pubmed.ncbi.nlm.nih.gov/39353515/. DOI: 10.1016/j.mri.2024.110240.
[20]
XU F L, TIAN Z R, TIAN B, et al. Application of the IDEAL-IQ sequence in the quantitative evaluation of fat infiltration in the rotator cuff muscle group after supraspinatus tendon injury[J]. Chin J Magn Reson Imag, 2024, 15(10): 115-122. DOI: 10.12015/issn.1674-8034.2024.10.020.
[21]
TIAN Y, MA M M, YANG H R, et al. Study on the diagnostic value of iliac high-resolution MRI with IDEAL-IQ sequence in evaluating and typing of aplastic Anemia[J]. Chin Comput Med Imag, 2021, 27(2): 151-155. DOI: 10.19627/j.cnki.cn31-1700/th.2021.02.015.
[22]
MOURAD C, COSENTINO A, LALONDE M N, et al. Advances in bone marrow imaging: strengths and limitations from a clinical perspective[J]. Semin Musculoskelet Radiol, 2023, 27(1): 3-21. DOI: 10.1055/s-0043-1761612.
[23]
BAUM T, CORDES C, DIECKMEYER M, et al. MR-based assessment of body fat distribution and characteristics[J]. Eur J Radiol, 2016, 85(8): 1512-1518. DOI: 10.1016/j.ejrad.2016.02.013.
[24]
OPREA-LAGER D E, CYSOUW M C F, BOELLAARD R, et al. Bone metastases are measurable: the role of whole-body MRI and positron emission tomography[J]. Front Oncol, 2021, 11: 772530. DOI: 10.3389/fonc.2021.772530.
[25]
LI C J, XIAO Y, SUN Y C, et al. Senescent immune cells release grancalcin to promote skeletal aging[J]. Cell Metab, 2021, 33(10): 1957-1973. DOI: 10.1016/j.cmet.2021.08.009.
[26]
BEEKMAN K M, DUQUE G, CORSI A, et al. Osteoporosis and bone marrow adipose tissue[J]. Curr Osteoporos Rep, 2023, 21(1): 45-55. DOI: 10.1007/s11914-022-00768-1.
[27]
STELTER J, WEISS K, WU M M, et al. Dixon-based B0 self-navigation in radial stack-of-stars multi-echo gradient echo imaging[J]. Magn Reson Med, 2025, 93(1): 80-95. DOI: 10.1002/mrm.30261.
[28]
KARAMPINOS D C, RUSCHKE S, DIECKMEYER M, et al. Quantitative MRI and spectroscopy of bone marrow[J]. J Magn Reson Imaging, 2018, 47(2): 332-353. DOI: 10.1002/jmri.25769.
[29]
JARRAYA M, BREDELLA M A. Clinical imaging of marrow adiposity[J/OL]. Best Pract Res Clin Endocrinol Metab, 2021, 35(4): 101511 [2025-04-01]. https://pubmed.ncbi.nlm.nih.gov/33648849/. DOI: 10.1016/j.beem.2021.101511.
[30]
JONES J G. Non-invasive analysis of human liver metabolism by magnetic resonance spectroscopy[J]. Metabolites, 2021, 11(11): 751. DOI: 10.3390/metabo11110751.
[31]
PATEL N, MIRZA H, BAI P, et al. Aplastic Anemia mimicking myelofibrosis: A diagnostic dilemma[J/OL]. Cureus, 2023 [2025-04-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10751010/. DOI: 10.7759/cureus.49445
[32]
ZHANG Y J, YU Z Y, LIU J W, et al. Application of abdominal MRI in diagnosis of primary bone marrow fibrosis[J]. World Latest Med Inf, 2015, 15(91): 10-11. DOI: 10.3969/j.issn.1671-3141.2015.91.005.
[33]
TSUJIKAWA T, TASAKI T, HOSONO N, et al. 18F-FLT PET/MRI for bone marrow failure syndrome-initial experience[J/OL]. EJNMMI Res, 2019, 9: 16 [2025-04-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6377687/. DOI: 10.1186/s13550-019-0490-0.
[34]
ZENG Z L, MA X Z, GUO Y F, et al. Quantifying bone marrow fat fraction and iron by MRI for distinguishing aplastic Anemia from myelodysplastic syndromes[J]. J Magn Reson Imaging, 2021, 54(6): 1754-1760. DOI: 10.1002/jmri.27769.
[35]
GUAN W M, YU W. Advances of magnetic resonance imaging in patients with myelodysplastic syndromes[J]. Int J Med Radiol, 2018, 41(1): 77-80. DOI: 10.19300/j.2018.Z5114.
[36]
XIANG P, WU X, ZENG Z, et al. Quantitative analysis of pelvic bone marrow fat using an MRI-based machine learning method for distinguishing aplastic anaemia from myelodysplastic syndromes[J/OL]. Clin Radiol, 2023, 78(6): e463-e468 [2025-04-01]. https://pubmed.ncbi.nlm.nih.gov/36977621/. DOI: 10.1016/j.crad.2023.02.012.
[37]
MU X, CHEN C, DONG L, et al. Immunotherapy in leukaemia[J]. Acta Biochim Biophys Sin (Shanghai), 2023, 55(6): 974-987. DOI: 10.3724/abbs.2023101.
[38]
WANG L, LI Q, LI W, et al. Comparison analysis between histological classification of acute myeloid leukemia and MRI classification of skull bone marrow[J]. Int J Med Radiol, 2021, 44(6): 649-652, 656. DOI: 10.19300/j.2021.L19267.
[39]
SHEN H F, ZHAO Y C, SHI Y F, et al. The diagnostic and prognostic value of MRI in central nervous system involvement of acute myeloid leukemia: a retrospective cohort of 84 patients[J]. Hematology, 2020, 25(1): 258-263. DOI: 10.1080/16078454.2020.1781500.
[40]
DE LEVAL L, JAFFE E S. Lymphoma classification[J]. Cancer J, 2020, 26(3): 176-185. DOI: 10.1097/PPO.0000000000000451.
[41]
ANSELL S M. Hodgkin lymphoma: 2025 update on diagnosis, risk-stratification, and management[J]. Am J Hematol, 2024, 99(12): 2367-2378. DOI: 10.1002/ajh.27470.
[42]
NGUYEN J C, DAVIS K W, ARKADER A, et al. Pre-treatment MRI of leukaemia and lymphoma in children: are there differences in marrow replacement patterns on T1-weighted images?[J]. Eur Radiol, 2021, 31(10): 7992-8000. DOI: 10.1007/s00330-021-07814-z.
[43]
SUBAHI E A, ATA F, CHOUDRY H, et al. Extramedullary haematopoiesis in patients with transfusion dependent β-thalassaemia (TDT): a systematic review[J]. Ann Med, 2022, 54(1): 764-774. DOI: 10.1080/07853890.2022.2048065.
[44]
NAKAVACHARA P, WEERAKULWATTANA P, POOLIAM J, et al. Bone mineral density in primarily preadolescent children with hemoglobin E/β-thalassemia with different severities and transfusion requirements[J/OL]. Pediatr Blood Cancer, 2022, 69(9): e29789 [2025-04-01]. https://pubmed.ncbi.nlm.nih.gov/35652568/. DOI: 10.1002/pbc.29789.
[45]
ISMAIL U N, AHMAD AZLAN C, KHAIRULLAH S, et al. Bone marrow fat distribution in patients with β-thalassemia: a study using chemical shift-based water-fat MRI[J/OL]. Acad Radiol, 2022, 29(4): e39-e48 [2025-04-01]. https://pubmed.ncbi.nlm.nih.gov/33992535/. DOI: 10.1016/j.acra.2021.03.028.
[46]
MELONI A, PISTOIA L, RESTAINO G, et al. Quantitative T2* MRI for bone marrow iron overload: normal reference values and assessment in thalassemia major patients[J]. Radiol Med, 2022, 127(11): 1199-1208. DOI: 10.1007/s11547-022-01554-w.
[47]
HERIS H K, NEJATI B, REZAZADEH K, et al. Evaluation of iron overload by cardiac and liver T2* in β-thalassemia: Correlation with serum ferritin, heart function and liver enzymes[J]. J Cardiovasc Thorac Res, 2021, 13(1): 54-60. DOI: 10.34172/jcvtr.2021.18.
[48]
RODRÍGUEZ-LAVAL V, LUMBRERAS-FERNÁNDEZ B, AGUADO-BUENO B, et al. Imaging of multiple myeloma: present and future[J/OL]. J Clin Med, 2024, 13(1): 264 [2025-04-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10780302/. DOI: 10.3390/jcm13010264.
[49]
PARK J M, JUNG H A, KIM D W, et al. Magnetic resonance imaging of the bone marrow after bone marrow transplantation or immunosuppressive therapy in aplastic Anemia[J/OL]. J Korean Med Sci, 2001, 16(6): 725 [2025-04-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC3054786/. DOI: 10.3346/jkms.2001.16.6.725.
[50]
AMANO Y, KUMAZAKI T. Quantitative and qualitative assessment of reactive hematopoietic bone marrow in aplastic Anemia using MR spectroscopy with variable echo times[J]. Skeletal Radiol, 2002, 31(1): 19-24. DOI: 10.1007/s002560100413.
[51]
GONG Y Y. Preliminary study on T1WI signal intensity ratio in normal bone marrow and AL bone marrow of young and middle-aged people[D]. Gannan Medical University,2023. DOI: 10.27959/d.cnki.ggnyx.2023.000242.
[52]
KIM G C, DAVIDSON A M, BEYDA R M, et al. Scurvy, abnormal MRI, and gelatinous bone marrow in an adolescent with avoidant restrictive food intake disorder[J/OL]. J Eat Disord, 2023, 11(1): 41 [2025-04-01]. https://pubmed.ncbi.nlm.nih.gov/36941672/. DOI: 10.1186/s40337-023-00770-7.
[53]
MARTÍN-NOGUEROL T, DÍAZ-ANGULO C, VILANOVA C, et al. How to do and evaluate DWI and DCE-MRI sequences for diabetic foot assessment[J]. Skeletal Radiol, 2024, 53(10): 1979-1990. DOI: 10.1007/s00256-023-04518-x.

PREV Progress in the application of radiomics in the comprehensive treatment of advanced cervical cancer
NEXT Advances in the application of multimodal magnetic resonance imaging for nerve root assessment before and after minimally invasive surgery for lumbar disc herniation
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn