Share:
Share this content in WeChat
X
Review
Advances in the application of multimodal magnetic resonance imaging for nerve root assessment before and after minimally invasive surgery for lumbar disc herniation
SUN Qi  XIAO Wenfeng 

Cite this article as: SUN Q, XIAO W F. Advances in the application of multimodal magnetic resonance imaging for nerve root assessment before and after minimally invasive surgery for lumbar disc herniation[J]. Chin J Magn Reson Imaging, 2025, 16(4): 221-227. DOI:10.12015/issn.1674-8034.2025.04.036.


[Abstract] Lumbar disc herniation (LDH) is a common spinal disorder that significantly impacts patients' quality of life. With advancements in minimally invasive surgical techniques, percutaneous endoscopic lumbar discectomy (PELD) has emerged as a mainstream treatment option due to its advantages of minimal trauma and rapid recovery. However, conventional imaging techniques have limitations in assessing nerve root function, making it difficult to comprehensively evaluate the microstructure and functional status of nerve roots. Multimodal magnetic resonance imaging (MRI) techniques, such as magnetic resonance neurography (MRN), diffusion tensor imaging (DTI), and diffusion tensor tractography (DTT), integrate morphological and functional assessments to more accurately visualize nerve root compression, injury severity, and postoperative recovery. These methods provide critical insights for LDH diagnosis, surgical planning, and treatment efficacy evaluation. In recent years, the application of artificial intelligence (AI) in medical image analysis has brought breakthroughs in automated LDH detection and nerve root assessment. Deep learning-based image reconstruction and segmentation techniques have significantly improved image quality and diagnostic efficiency. Future research should focus on optimizing AI algorithms and exploring their potential in conjunction with multimodal MRI for pre- and postoperative nerve root evaluation in LDH, aiming to enhance diagnostic accuracy and therapeutic outcomes. This article provides a systematic review of the current application status of multimodal MRI in the evaluation of nerve roots before and after minimally invasive LDH surgery, analyzes its advantages and limitations, and explores the future development direction of combining with artificial intelligence. The aim is to provide reference for optimizing clinical diagnosis and treatment decisions and exploring the mechanism of nerve root injury in scientific research.
[Keywords] lumbar disc herniation;lumbosacral nerve root;percutaneous endoscopic lumbar discectomy;magnetic resonance imaging;deep learning

SUN Qi1   XIAO Wenfeng2*  

1 School of Medical Imaging, Binzhou Medical University, Yantai 264003, China

2 Department of Medical Imaging, Shengli Oilfield Central Hospital, Dongying 257034, China

Corresponding author: XIAO W F, E-mail: xiaohy1999@163.com

Conflicts of interest   None.

Received  2025-01-09
Accepted  2025-04-10
DOI: 10.12015/issn.1674-8034.2025.04.036
Cite this article as: SUN Q, XIAO W F. Advances in the application of multimodal magnetic resonance imaging for nerve root assessment before and after minimally invasive surgery for lumbar disc herniation[J]. Chin J Magn Reson Imaging, 2025, 16(4): 221-227. DOI:10.12015/issn.1674-8034.2025.04.036.

[1]
Basic Research and Transformation Society of Professional Committee of Spine and Spinal Cord of Chinese Association of Rehabilitation Medicine. Guideline for diagnosis, treatment and rehabilitation of lumbar disc herniation[J]. Chin J Surg, 2022, 60(5): 401-408. DOI: 10.3760/cma.j.cn112139-20211122-00548.
[2]
ZHANG A S, XU A, ANSARI K, et al. Lumbar disc herniation: diagnosis and management[J]. 2023, 136(7): 645-651. DOI: 10.1016/j.amjmed.2023.03.024.
[3]
POJSKIC M, BISSON E, OERTEL J, et al. Lumbar disc herniation: Epidemiology, clinical and radiologic diagnosis WFNS spine committee recommendations[J/OL]. World Neurosurg X, 2024, 22: 100279 [2024-11-04]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10911853/. DOI: 10.1016/j.wnsx.2024.100279.
[4]
WU B L, YANG B. New progress in application of magnetic resonance neuroimaging in lumbar disc herniation[J]. J Mudanjiang Med Univ, 2023, 44(6): 147-150. DOI: 10.13799/j.cnki.mdjyxyxb.2023.06.021.
[5]
HONG Q L, WANG D L, YU D X. Analysis of correlation between serum MMP-3, PGE2, IL-1β and pain in patients with lumbar disc herniation[J]. Med Innov China, 2022, 19(22): 157-160. DOI: 10.3969/j.issn.1674-4985.2022.22.038.
[6]
XUE H W, ZHU M, LI Y Q. Interleukin-27 is associated with the pathogenesis of lumbar disc herniation[J]. Chin J Tissue Eng Res, 2022, 26(23): 3750-3755. DOI: 10.12307/2022.678.
[7]
WANG Y D, XU Y Y, SU B K, et al. Progress in the treatment of lumbar disc herniation by percutaneous intervertebral foramen microscopy[J]. Chin J Clin Anat, 2020, 38(4): 488-491. DOI: 10.13418/j.issn.1001-165x.2020.04.024.
[8]
GADJRADJ P S, RUBINSTEIN S M, PEUL W C, et al. Full endoscopic versus open discectomy for sciatica: randomised controlled non-inferiority trial[J/OL]. BMJ, 2022, 376: e065846 [2024-11-04]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8859734/. DOI: 10.1136/bmj-2021-065846.
[9]
SHEN S C, CHEN H C, TSOU H K, et al. Percutaneous endoscopic lumbar discectomy for L5-S1 disc herniation based on image analysis and clinical findings: a retrospective review of 345 cases[J/OL]. Medicine, 2023, 102(5): e32832 [2024-11-04]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9901959/. DOI: 10.1097/MD.0000000000032832.
[10]
DAI Y S, LI D Y, WEN X L. Percutaneous transforaminal endoscopic discectomy for lumbar disc herniation: an efficacy analysis[J]. Am J Transl Res, 2024, 16(3): 829-837. DOI: 10.62347/UWID7065.
[11]
FENG D W, PANG S T, SUN P, et al. Efficacy analysis of two surgical methods in the treatment of lumbar disc herniation with different Pfirrmann grades[J]. Chin J Bone Jt Inj, 2022, 37(5): 458-463. DOI: 10.7531/j.issn.1672-9935.2022.05.003.
[12]
YANG S, SUN M J, LONG C, et al. Relationship between lumbar MRI multi-parameters, VAS score and JOA score and the efficacy of percutaneous endoscopic lumbar discectomy in patients with lumbar disc herniation[J]. Prog Mod Biomed, 2024, 24(22): 4348-4350, 4396. DOI: 10.13241/j.cnki.pmb.2024.22.044.
[13]
NI C L, LI D P. Summary of clinical manifestations and CT and MRI imaging manifestations of nerve root injury[J]. Chin J Bone Jt Inj, 2020, 35(5): 556-557. DOI: 10.7531/j.issn.1672-9935.2020.05.042.
[14]
ZHANG S J, CHEN H S, ZHOU R Z, et al. The shortcomings of conventional MR images in the diagnosis of lumbar disc herniation: comparative study with the results of surgical operation[J]. Chin J Magn Reson Imag, 2018, 9(2): 117-121. DOI: 10.12015/issn.1674-8034.2018.02.008.
[15]
WANG H W, LI K X, WANG Q Y, et al. Anatomical study of lower lumbar Kambin triangle based on MRN technique[J]. Chin J Clin Anat, 2022, 40(3): 267-270, 276. DOI: 10.13418/j.issn.1001-165x.2022.3.05.
[16]
SAKAI T, MIYAGI R, YAMABE E, et al. Diffusion-weighted imaging and diffusion tensor imaging of asymptomatic lumbar disc herniation[J]. 2014, 61(1/2): 197-203. DOI: 10.2152/jmi.61.197.
[17]
HAN M L, HE Z Y, FANG X J, et al. Study on diffusion tensor imaging before and after minimally invasive surgery for lumbar disc herniation[J]. Chin J Magn Reson Imag, 2020, 11(6): 422-426. DOI: 10.12015/issn.1674-8034.2020.06.005.
[18]
LIU Y H, WANG S T, YANG C X, et al. Retrospective study of the interlaminar approach for percutaneous endoscopic lumbar discectomy with the guidance of pre-operative magnetic resonance neurography[J/OL]. Ann Transl Med, 2019, 7(7): 145 [2024-11-04]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6511578/. DOI: 10.21037/atm.2019.03.22.
[19]
JUNG J Y, LIN Y, CARRINO J A. An updated review of magnetic resonance neurography for plexus imaging[J]. Korean J Radiol, 2023, 24(11): 1114-1130. DOI: 10.3348/kjr.2023.0150.
[20]
YU Q Q, CHEN Y J, ZHANG X D, et al. Comparison of three 3D magnetic resonance neurography sequences in displaying lumbar sacral plexus and imaging anatomy[J]. Chin J Clin Anat, 2020, 38(4): 385-390. DOI: 10.13418/j.issn.1001-165x.2020.04.005.
[21]
SUN Z, KONG C, LU S B, et al. A comparative study on the consistency of 3D MEDIC and 3D SPACE magnetic resonance neurography imaging in lumbosacral plexus nerve roots[J]. J Cap Med Univ, 2021, 42(1): 131-137. DOI: 10.3969/j.issn.1006-7795.2021.01.022.
[22]
LUO W S, XU L J, LAN W X, et al. A Study on the Assessment of Lumbar Disc Herniation Causing Lumbosacral Nerve Root Compression Using Magnetic Resonance 3DFIESTA Sequence[J]. World Latest Medicine Information, 2023, 23(91): 54-58. DOI: 10.3969/j.issn.1671-3141.2023.091.012.
[23]
YOON D, LUTZ A M. Diffusion tensor imaging of peripheral nerves: current status and new developments[J]. Semin Musculoskelet Radiol, 2023, 27(6): 641-648. DOI: 10.1055/s-0043-1775742.
[24]
TAKAGI T, NAKAMURA M, YAMADA M, et al. Visualization of peripheral nerve degeneration and regeneration: monitoring with diffusion tensor tractography[J]. Neuroimage, 2009, 44(3): 884-892. DOI: 10.1016/j.neuroimage.2008.09.022.
[25]
ANDREISEK G, WHITE L M, KASSNER A, et al. Evaluation of diffusion tensor imaging and fiber tractography of the Median nerve: preliminary results on intrasubject variability and precision of measurements[J]. AJR Am J Roentgenol, 2010, 194(1): W65-W72. DOI: 10.2214/AJR.09.2517.
[26]
HECKEL A, WEILER M, XIA A, et al. Peripheral nerve diffusion tensor imaging: assessment of axon and myelin sheath integrity[J/OL]. PLoS One, 2015, 10(6): e0130833 [2024-11-04]. https://pmc.ncbi.nlm.nih.gov/articles/PMC4482724/. DOI: 10.1371/journal.pone.0130833.
[27]
DAOUST J, SCHAFFER J, ZEIGHAMI Y, et al. White matter integrity differences in obesity: a meta-analysis of diffusion tensor imaging studies[J]. Neurosci Biobehav Rev, 2021, 129: 133-141. DOI: 10.1016/j.neubiorev.2021.07.020.
[28]
WANG W Z, LIU X, YANG Z Y, et al. Diffusion tensor imaging of the hippocampus reflects the severity of hippocampal injury induced by global cerebral ischemia/reperfusion injury[J]. Neural Regen Res, 2022, 17(4): 838-844. DOI: 10.4103/1673-5374.322468.
[29]
ZHU F Z, ZENG L, GUI S, et al. The role of diffusion tensor imaging and diffusion tensor tractography in the assessment of acute traumatic thoracolumbar spinal cord injury[J/OL]. World Neurosurg, 2021, 150: e23-e30 [2024-11-04]. https://pubmed.ncbi.nlm.nih.gov/33561552/. DOI: 10.1016/j.wneu.2021.01.146.
[30]
KOLLMER J, BENDSZUS M. Magnetic resonance neurography: improved diagnosis of peripheral neuropathies[J]. Neurotherapeutics, 2021, 18(4): 2368-2383. DOI: 10.1007/s13311-021-01166-8.
[31]
LIANG W S, HAN B, HAI Y, et al. Diffusion tensor imaging with fiber tracking provides a valuable quantitative and clinical evaluation for compressed lumbosacral nerve roots: a systematic review and meta-analysis[J]. Eur Spine J, 2021, 30(4): 818-828. DOI: 10.1007/s00586-020-06556-8.
[32]
OUYANG Z Q, ZHANG N, LI M H, et al. A meta-analysis of the role of diffusion tensor imaging in cervical spinal cord compression[J]. J Neuroimaging, 2023, 33(4): 493-500. DOI: 10.1111/jon.13093.
[33]
YANG S, KWON S, CHANG M C. The usefulness of diffusion tensor tractography in diagnosing neuropathic pain: A narrative review[J/OL]. Front Neurosci, 2021, 15: 591018 [2024-11-04]. https://pubmed.ncbi.nlm.nih.gov/33841069/. DOI: 10.3389/fnins.2021.591018.
[34]
ZOU Q, LI X C, HOU Z J, et al. Magnetic resonance diffusion tensor imaging of peripheral nerve traction injury and its correlation with histology[J]. J Pract Med, 2014, 30(22): 3562-3565. DOI: 10.3969/j.issn.1006-5725.2014.22.007.
[35]
LI F D. Application of conventional MRI sequence combined with 3D-STIR sequence neuroimaging technology in lumbar disc herniation[J]. Pract Clin J Integr Tradit Chin West Med, 2023, 23(5): 86-88, 112. DOI: 10.13638/j.issn.1671-4040.2023.05.024.
[36]
RONG D D, LI X Y, KONG C, et al. The value of contrast-enhanced three-dimensional isotropic T2-weighted turbo spin-echo SPACE sequence in the diagnosis of lumbosacral nerve root compression[J]. Chin J Bone Jt, 2021, 10(11): 840-846. DOI: 10.3969/j.issn.2095-252X.2021.11.008.
[37]
CHEN S B, LIN Y, LUO A F, et al. Diagnostic value of coronal magnetic resonance imaging and PROSET water excitation sequence in the pathogenic segments of multilevel lumbar disc herniation[J]. Chin J CT MRI, 2024, 22(5): 158-160. DOI: 10.3969/j.issn.1672-5131.2024.05.050.
[38]
CHEN J C, ZHONG Y, LIU G H, et al. Correlation study between compressed nerve DTI parameters and nerve root pain in lumbar disc herniation[J]. Chin Imag J Integr Tradit West Med, 2022, 20(5): 479-482, 486. DOI: 10.3969/j.issn.1672-0512.2022.05.019.
[39]
KAMBIN P, BRAGER M D. Percutaneous posterolateral discectomy. anatomy and mechanism[J]. Clin Orthop Relat Res, 1987(223): 145-154.
[40]
CHENG H Y, LAN H L, BAO Y Y, et al. Application of magnetic resonance diffusion tensor imaging in diagnosis of lumbosacral nerve root compression[J/OL]. Curr Med Imaging, 2024, 20: e120623217889 [2024-11-04]. https://www.eurekaselect.com/article/132469. DOI: 10.2174/1573405620666230612122725.
[41]
YAMADA K, NAGAHAMA K, ABE Y, et al. Evaluation of surgical indications for full endoscopic discectomy at lumbosacral disc levels using three-dimensional magnetic resonance/computed tomography fusion images created with artificial intelligence[J/OL]. Medicina, 2023, 59(5): 860 [2024-11-04]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10224500/. DOI: 10.3390/medicina59050860.
[42]
YANG X Y, WANG L L, YANG Q, et al. Neurological safety of endoscopic transforaminal lumbar interbody fusion: A magnetic resonance neurography study[J]. Spine, 2023, 48(5): 344-349. DOI: 10.1097/BRS.0000000000004496.
[43]
LIU L J, DING Q R, MA C, et al. Minimally invasive treatment of lumbar disc herniation with adjacent spinal stenosis assisted by diffusion tensor imaging of magnetic resonance[J]. J Nanjing Med Univ Nat Sci, 2021, 41(9): 1379-1382. DOI: 10.7655/NYDXBNS20210918.
[44]
XU R, KANG X G, HE X, et al. Application of three-dimensional true fast imaging with steady-state precession sequence combined with diffusion tensor tractography for lumbar disc herniation[J]. Chin J Interv Imag Ther, 2019, 16(8): 469-474. DOI: 10.13929/j.1672-8475.201901061.
[45]
ZHAO H M, YU L. The factors influencing the curative effect of percutaneous transforaminal endoscopic discectomy for lumbar disc herniation based on MRI indexes and clinical features[J]. China J Endosc, 2024, 30(9): 78-84. DOI: 10.12235/E20230589.
[46]
WU P H, HUANG C Y, ZHAO S L, et al. Preoperative quantitative diffusion tensor imaging on the spinal nerve root is a predictor for the surgical outcome of lumbar disc herniation: a prospective study of 117 patients[J]. J Neurosurg Sci, 2023, 67(2): 219-229. DOI: 10.23736/S0390-5616.21.05441-2.
[47]
LI X, LIU Z P, ZHAO H Q, et al. Effects of PTED on the pain and lumbar function in patients with lubar intervertebral disc protrusion and the evaluation value of diffusion tensor imaging[J]. Hebei Med J, 2022, 44(15): 2292-2295. DOI: 10.3969/j.issn.1002-7386.2022.15.012.
[48]
LI J Q, CUI H, LIU Z P, et al. Utility of diffusion tensor imaging for guiding the treatment of lumbar disc herniation by percutaneous transforaminal endoscopic discectomy[J/OL]. Sci Rep, 2019, 9(1): 18753 [2024-11-04]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6904469/. DOI: 10.1038/s41598-019-55064-3.
[49]
SHI Y, ZHAO F, DOU W Q, et al. Quantitative evaluation of intraspinal lumbar disc herniation-related lumbosacral radiculopathy before and after percutaneous transforaminal endoscopic discectomy using diffusion tensor imaging[J/OL]. Spine, 2021, 46(13): E734-E742 [2024-11-04]. https://pubmed.ncbi.nlm.nih.gov/33399366/. DOI: 10.1097/BRS.0000000000003925.
[50]
SUSTERSIC T, RANKOVIC V, MILOVANOVIC V, et al. A deep learning model for automatic detection and classification of disc herniation in magnetic resonance images[J]. IEEE J Biomed Health Inform, 2022, 26(12): 6036-6046. DOI: 10.1109/JBHI.2022.3209585.
[51]
DUAN X Y, XIONG H L, LIU R, et al. Enhanced deep leaning model for detection and grading of lumbar disc herniation from MRI[J]. Med Biol Eng Comput, 2024, 62(12): 3709-3719. DOI: 10.1007/s11517-024-03161-5.
[52]
PITMAN J, LIN Y, TAN E T, et al. Magnetic resonance neurography of the lumbosacral plexus[J]. Radiol Clin North Am, 2024, 62(2): 229-245. DOI: 10.1016/j.rcl.2023.09.008.
[53]
ZOCHOWSKI K C, TAN E T, ARGENTIERI E C, et al. Improvement of peripheral nerve visualization using a deep learning-based MR reconstruction algorithm[J]. Magn Reson Imaging, 2022, 85: 186-192. DOI: 10.1016/j.mri.2021.10.038.

PREV Research progress on bone marrow magnetic resonance imaging of aplastic anemia
NEXT Research progress of PCASL imaging technology artifact and its clinic
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn