Share:
Share this content in WeChat
X
Review
Research progress of PCASL imaging technology artifact and its clinic
LI Zhongxin  HE Yexin 

Cite this article as: LI Z X, HE Y X. Research progress of PCASL imaging technology artifact and its clinic[J]. Chin J Magn Reson Imaging, 2025, 16(4): 228-234. DOI:10.12015/issn.1674-8034.2025.04.037.


[Abstract] Arterial spin labeling (ASL) is a non-invasive magnetic resonance perfusion imaging technique that uses magnetically labeled water in flowing blood as an endogenous tracer to assess cerebral blood flow (CBF). At present, it has demonstrated unique clinical value in cerebrovascular diseases, brain tumors, epilepsy and neurodegenerative diseases. With the continuous development of technology, it can be divided into four categories according to different pulse methods, and the most commonly used technology in clinical practice is pseudocontinuous ASL (PCASL). Although PCASL technology has shown great potential in clinical applications, it still faces the problem of artifact generation during imaging. These artifacts may occur at all stages of imaging, and can be divided into three main categories: during labeling, during arterial transmission, and during readout, and the causes and manifestations of artifacts are complex. Therefore, it is of great significance to further improve the accuracy and reliability of PCASL technology in clinical applications. This article reviews the performance characteristics, causes, remedial measures, and potential clinical value of PCASL technical artifacts, in order to explore its clinical value and improve the practicability and reliability of PCASL in the field of neuroimaging.
[Keywords] magnetic resonance imaging;arterial spin labeling;artifacts;pseudocontinuous arterial spin labeling;arterial transit time;post label delay

LI Zhongxin1   HE Yexin2*  

1 Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

2 Department of Radiology, Shanxi Provincial People's Hospital, Fifth Clinical College of Shanxi Medical University, Taiyuan 030012, China

Corresponding author: HE Y X, E-mail: heyexinty2000@sina.com

Conflicts of interest   None.

Received  2024-10-09
Accepted  2025-04-10
DOI: 10.12015/issn.1674-8034.2025.04.037
Cite this article as: LI Z X, HE Y X. Research progress of PCASL imaging technology artifact and its clinic[J]. Chin J Magn Reson Imaging, 2025, 16(4): 228-234. DOI:10.12015/issn.1674-8034.2025.04.037.

[1]
IUTAKA T, DE FREITAS M B, OMAR S S, et al. Arterial spin labeling: techniques, clinical applications, and interpretation[J/OL]. Radiographics, 2023, 43(1): e220088 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/36367822/. DOI: 10.1148/rg.220088.
[2]
TASO M, ARAMENDÍA-VIDAURRETA V, ENGLUND E K, et al. Update on state-of-the-art for arterial spin labeling (ASL) human perfusion imaging outside of the brain[J]. Magn Reson Med, 2023, 89(5): 1754-1776. DOI: 10.1002/mrm.29609.
[3]
GOLAY X, HO M L. Multidelay ASL of the pediatric brain[J/OL]. Br J Radiol, 2022, 95(1134): 20220034 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/35451851/. DOI: 10.1259/bjr.20220034.
[4]
KITAJIMA M, UETANI H. Arterial spin labeling for pediatric central nervous system diseases: techniques and clinical applications[J]. Magn Reson Med Sci, 2023, 22(1): 27-43. DOI: 10.2463/mrms.rev.2021-0118.
[5]
PASCHOAL A M, WOODS J G, PINTO J, et al. Reproducibility of arterial spin labeling cerebral blood flow image processing: a report of the ISMRM open science initiative for perfusion imaging (OSIPI) and the ASL MRI challenge[J]. Magn Reson Med, 2024, 92(2): 836-852. DOI: 10.1002/mrm.30081.
[6]
LI R, JIN S, WANG Y, et al. Brain perfusion alterations on 3D pseudocontinuous arterial spin-labeling MR imaging in patients with autoimmune encephalitis: a case series and literature review[J]. AJNR Am J Neuroradiol, 2022, 43(5): 701-706. DOI: 10.3174/ajnr.A7478.
[7]
ALSOP D C, DETRE J A, GOLAY X, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia[J]. Magn Reson Med, 2015, 73(1): 102-116. DOI: 10.1002/mrm.25197.
[8]
LEE S, MEYER B P, HERNANDEZ-GARCIA L, et al. Comparison and optimization of pCASL and VSASL for rat thoracolumbar spinal cord MRI at 9.4 T[J]. Magn Reson Med, 2023, 89(6): 2305-2317. DOI: 10.1002/mrm.29603.
[9]
HAIDAR H, MAJZOUB R E, HAJEER S, et al. Arterial spin labeling (ASL-MRI) versus fluorodeoxyglucose-PET (FDG-PET) in diagnosing dementia: a systematic review and meta-analysis[J/OL]. BMC Neurol, 2023, 23(1): 385 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/37875879/. DOI: 10.1186/s12883-023-03432-y.
[10]
CHEN Y N, ZHANG Y M, SUN B, et al. Advances in magnetic resonance ASL techniques and their artifact mechanisms[J]. Int J Med Radiol, 2023, 46(6): 716-720. DOI: 10.19300/j.2023.Z20610.
[11]
FENG X B, ZHENG X Y, HOU J X, et al. The current status and development prospects of magnetic resonance artifact reduction technology[J]. China Med Device Inf, 2024, 30(21): 69-72. DOI: 10.15971/j.cnki.cmdi.2024.21.047.
[12]
JING S, WANG Y, ZHAO X C, et al. Formation Mechanism of magnetic resonance equipment artifacts and maintenance of fault cases[J]. China Med Equip, 2024, 21(7): 192-195. DOI: 10.3969/j.issn.1672-8270.2024.07.036.
[13]
DAI W Y, GARCIA D, DE BAZELAIRE C, et al. Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields[J]. Magn Reson Med, 2008, 60(6): 1488-1497. DOI: 10.1002/mrm.21790.
[14]
HERNANDEZ-GARCIA L, ARAMENDÍA-VIDAURRETA V, BOLAR D S, et al. Recent technical developments in ASL: a review of the state of the art[J]. Magn Reson Med, 2022, 88(5): 2021-2042. DOI: 10.1002/mrm.29381.
[15]
KITAJIMA M, UETANI H. Arterial spin labeling for pediatric central nervous system diseases: techniques and clinical applications[J]. Magn Reson Med Sci, 2023, 22(1): 27-43. DOI: 10.2463/mrms.rev.2021-0118.
[16]
BINNIE L R, PAULS M M H, BENJAMIN P, et al. Test-retest reliability of arterial spin labelling for cerebral blood flow in older adults with small vessel disease[J]. Transl Stroke Res, 2022, 13(4): 583-594. DOI: 10.1007/s12975-021-00983-5.
[17]
JIANG H L, SU W, CHEN H Y, et al. Application value of arterial spin labeling imaging with dual parameters in evaluating collateral circulation and prognosis of acute ischemic stroke[J]. Chin J Magn Reson Imag, 2023, 14(3): 53-57, 80. DOI: 10.12015/issn.1674-8034.2023.03.010.
[18]
LINDNER T, BOLAR D S, ACHTEN E, et al. Current state and guidance on arterial spin labeling perfusion MRI in clinical neuroimaging[J]. Magn Reson Med, 2023, 89(5): 2024-2047. DOI: 10.1002/mrm.29572.
[19]
FRANKLIN S L, SCHUURMANS M, OTIKOVS M, et al. Arterial spin labeling using spatio-temporal encoding readout for robust perfusion imaging in inhomogenous magnetic fields[J]. Magn Reson Med, 2023, 89(3): 1092-1101. DOI: 10.1002/mrm.29506.
[20]
MANNING P, DAGHIGHI S, RAJARATNAM M K, et al. Differentiation of progressive disease from pseudoprogression using 3D PCASL and DSC perfusion MRI in patients with glioblastoma[J]. J Neurooncol, 2020, 147(3): 681-690. DOI: 10.1007/s11060-020-03475-y.
[21]
LÜ R R, YANG Z H, GE X, et al. Preliminary study of synthetic MRI combined with three-dimensional arterial spin labeling imaging in differentiating recurrence and pseudoprogression of glioma[J]. Chin J Magn Reson Imag, 2022, 13(8): 19-23, 35. DOI: 10.12015/issn.1674-8034.2022.08.004.
[22]
SCHOLLENBERGER J, ALBERTO FIGUEROA C, NIELSEN J F, et al. Practical considerations for territorial perfusion mapping in the cerebral circulation using super-selective pseudo-continuous arterial spin labeling[J]. Magn Reson Med, 2020, 83(2): 492-504. DOI: 10.1002/mrm.27936.
[23]
SUZUKI Y, VAN OSCH M J P, FUJIMA N, et al. Optimization of the spatial modulation function of vessel-encoded pseudo-continuous arterial spin labeling and its application to dynamic angiography[J]. Magn Reson Med, 2019, 81(1): 410-423. DOI: 10.1002/mrm.27418.
[24]
JAHANIAN H, NOLL D C, HERNANDEZ-GARCIA L. B0 field inhomogeneity considerations in pseudo-continuous arterial spin labeling (pCASL): effects on tagging efficiency and correction strategy[J]. NMR Biomed, 2011, 24(10): 1202-1209. DOI: 10.1002/nbm.1675.
[25]
GHARIQ E, TEEUWISSE W M, WEBB A G, et al. Feasibility of pseudocontinuous arterial spin labeling at 7 T with whole-brain coverage[J]. MAGMA, 2012, 25(2): 83-93. DOI: 10.1007/s10334-011-0297-0.
[26]
JAGANMOHAN D, PAN S, KESAVADAS C, et al. A pictorial review of brain arterial spin labelling artefacts and their potential remedies in clinical studies[J]. Neuroradiol J, 2021, 34(3): 154-168. DOI: 10.1177/1971400920977031.
[27]
ZUN Z, SHANKARANARAYANAN A, ZAHARCHUK G. Pseudocontinuous arterial spin labeling with prospective motion correction (PCASL-PROMO)[J]. Magn Reson Med, 2014, 72(4): 1049-1056. DOI: 10.1002/mrm.25024.
[28]
ZUN Z, SHIN T. Velocity-selective excitation: principles and applications[J/OL]. NMR Biomed, 2023, 36(2): e4820 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/35994473/. DOI: 10.1002/nbm.4820.
[29]
ARONEN H J, NIEMI P, KWONG K K, et al. The effect of paramagnetic contrast media on T1 relaxation times in brain tumors[J]. Acta Radiol, 1998, 39(5): 474-481. DOI: 10.1080/02841859809172210.
[30]
STOTESBURY H, HALES P W, HOOD A M, et al. Individual watershed areas in sickle cell Anemia: an arterial spin labeling study[J/OL]. Front Physiol, 2022, 13: 865391 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/35592036/. DOI: 10.3389/fphys.2022.865391.
[31]
SHAN M, LIU K L, MA Y, et al. Arterial transit artifact as a short-term prognostic indicator in acute ischemic stroke[J/OL]. BMC Neurol, 2024, 24(1): 58 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/38336633/. DOI: 10.1186/s12883-024-03560-z.
[32]
MOROFUJI Y, HORIE N, TATEISHI Y, et al. Arterial spin labeling magnetic resonance imaging can identify the occlusion site and collateral perfusion in patients with acute ischemic stroke: comparison with digital subtraction angiography[J]. Cerebrovasc Dis, 2019, 48(1/2): 70-76. DOI: 10.1159/000503090.
[33]
ZHANG X B, HAN N N, ZHANG Y, et al. Predicting 3-month functional outcome after endovascular thrombectomy in patients with anterior circulation occlusion with an arterial transit artifact grading system[J]. Clin Neuroradiol, 2024, 34(1): 241-249. DOI: 10.1007/s00062-023-01362-3.
[34]
ZHANG M N, SHI Q, YUE Y, et al. Evaluation of T2-FLAIR combined with ASL on the collateral circulation of acute ischemic stroke[J]. Neurol Sci, 2022, 43(8): 4891-4900. DOI: 10.1007/s10072-022-06042-7.
[35]
FU L, YU H, LIU D G. Advances in functional MRI in cognitive impairment of moyamoya disease[J]. Chin J Magn Reson Imag, 2024, 15(1): 189-193. DOI: 10.12015/issn.1674-8034.2024.01.032.
[36]
LIN X Y, ZHANG Z L. Research progress on the application of 4D-ASL in cerebrovascular disease[J]. Chin J Magn Reson Imag, 2023, 14(6): 113-118. DOI: 10.12015/issn.1674-8034.2023.06.020.
[37]
TOGAO O, OBARA M, HELLE M, et al. Vessel-selective 4D-MR angiography using super-selective pseudo-continuous arterial spin labeling may be a useful tool for assessing brain AVM hemodynamics[J]. Eur Radiol, 2020, 30(12): 6452-6463. DOI: 10.1007/s00330-020-07057-4.
[38]
SUZUKI Y, CLEMENT P, DAI W Y, et al. ASL lexicon and reporting recommendations: a consensus report from the ISMRM Open Science Initiative for Perfusion Imaging (OSIPI)[J]. Magn Reson Med, 2024, 91(5): 1743-1760. DOI: 10.1002/mrm.29815.
[39]
LI L L, SHANG S A, MO X X, et al. The value of multi-delay arterial spin labeling in the evaluation of cerebral perfusion in patients with severe arterial stenosis or occlusion[J]. Chin J Magn Reson Imag, 2024, 15(3): 19-25. DOI: 10.12015/issn.1674-8034.2024.03.004.
[40]
YU H, LI Y, FENG Y, et al. Enhanced arterial spin labeling magnetic resonance imaging of cerebral blood flow of the anterior and posterior circulations in patients with intracranial atherosclerotic stenosis[J/OL]. Front Neurosci, 2021, 15: 823876 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/35250438/. DOI: 10.3389/fnins.2021.823876.
[41]
MORI T, ITO H, HARADA M, et al. Multi-delay arterial spin labeling brain magnetic resonance imaging study for pediatric autism[J]. Brain Dev, 2020, 42(4): 315-321. DOI: 10.1016/j.braindev.2020.01.007.
[42]
ZHANG H T, LU M M, LIU S T, et al. The value of 3D pseudo-continuousarterial spin labeling perfusion imaging in moyamoya disease-Comparison with dynamic susceptibility contrast perfusion imaging[J/OL]. Front Neurosci, 2022, 16: 944246 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/35992916/. DOI: 10.3389/fnins.2022.944246.
[43]
QIN Q, ALSOP D C, BOLAR D S, et al. Velocity-selective arterial spin labeling perfusion MRI: a review of the state of the art and recommendations for clinical implementation[J]. Magn Reson Med, 2022, 88(4): 1528-1547. DOI: 10.1002/mrm.29371.
[44]
LEWÉN A, FAHLSTRÖM M, BOROTA L, et al. ASL-MRI-guided evaluation of multiple burr hole revascularization surgery in Moyamoya disease[J]. Acta Neurochir, 2023, 165(8): 2057-2069. DOI: 10.1007/s00701-023-05641-3.
[45]
BOLAR D S, GAGOSKI B, ORBACH D B, et al. Comparison of CBF measured with combined velocity-selective arterial spin-labeling and pulsed arterial spin-labeling to blood flow patterns assessed by conventional angiography in pediatric moyamoya[J]. AJNR Am J Neuroradiol, 2019, 40(11): 1842-1849. DOI: 10.3174/ajnr.A6262.
[46]
QIU D Q, STRAKA M, ZUN Z, et al. CBF measurements using multidelay pseudocontinuous and velocity-selective arterial spin labeling in patients with long arterial transit delays: comparison with xenon CT CBF[J]. J Magn Reson Imaging, 2012, 36(1): 110-119. DOI: 10.1002/jmri.23613.
[47]
WOODS J G, WONG E C, BOYD E C, et al. VESPA ASL: velocity and SPAtially selective arterial spin labeling[J]. Magn Reson Med, 2022, 87(6): 2667-2684. DOI: 10.1002/mrm.29159.
[48]
HENDRIKSE J, PETERSEN E T, VAN LAAR P J, et al. Cerebral border zones between distal end branches of intracranial arteries: MR imaging[J]. Radiology, 2008, 246(2): 572-580. DOI: 10.1148/radiol.2461062100.
[49]
RAMAN A, UPRETY M, CALERO M J, et al. A systematic review comparing digital subtraction angiogram with magnetic resonance angiogram studies in demonstrating the angioarchitecture of cerebral arteriovenous malformations[J/OL]. Cureus, 2022, 14(6): e25803 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/35706438/. DOI: 10.7759/cureus.25803.
[50]
WU C X, DONG M Q, SHAN Y, et al. The diagnostic performance of the combination of ASL and TOF MRA for the cerebral arteriovenous shunt[J]. Natl Med J China, 2021, 101(23): 1791-1797. DOI: 10.3760/cma.j.cn112137-20201202-03239.
[51]
HEIT J J, THAKUR N H, IV M, et al. Arterial-spin labeling MRI identifies residual cerebral arteriovenous malformation following stereotactic radiosurgery treatment[J]. J Neuroradiol, 2020, 47(1): 13-19. DOI: 10.1016/j.neurad.2018.12.004.
[52]
ROJAS-VILLABONA A, SOKOLSKA M, SOLBACH T, et al. Planning of gamma knife radiosurgery (GKR) for brain arteriovenous malformations using triple magnetic resonance angiography (triple-MRA)[J]. Br J Neurosurg, 2022, 36(2): 217-227. DOI: 10.1080/02688697.2021.1884649.
[53]
AMUKOTUWA S A, YU C, ZAHARCHUK G. 3D Pseudocontinuous arterial spin labeling in routine clinical practice: a review of clinically significant artifacts[J]. J Magn Reson Imaging, 2016, 43(1): 11-27. DOI: 10.1002/jmri.24873.
[54]
JUTTUKONDA M R, DONAHUE M J, DAVIS L T, et al. Preliminary evidence for cerebral capillary shunting in adults with sickle cell Anemia[J]. J Cereb Blood Flow Metab, 2019, 39(6): 1099-1110. DOI: 10.1177/0271678X17746808.
[55]
JUTTUKONDA M R, DONAHUE M J, WADDLE S L, et al. Reduced oxygen extraction efficiency in sickle cell Anemia patients with evidence of cerebral capillary shunting[J]. J Cereb Blood Flow Metab, 2021, 41(3): 546-560. DOI: 10.1177/0271678X20913123.
[56]
NABAVIZADEH S ALI, AKBARI H, WARE J B, et al. Arterial Spin Labeling and Dynamic Susceptibility Contrast-enhanced MR Imaging for evaluation of arteriovenous shunting and tumor hypoxia in glioblastoma[J/OL]. Sci Rep, 2019, 9(1): 8747 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/31217496/. DOI: 10.1038/s41598-019-45312-x.
[57]
TATEBAYASHI K, NAKAYAMA N, SAKAMOTO D, et al. Clinical significance of early venous filling detected via preoperative angiography in glioblastoma[J/OL]. Cancers, 2023, 15(15): 3800 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/37568616/. DOI: 10.3390/cancers15153800.
[58]
HELLE M, RÜFER S, VAN OSCH M J P, et al. Superselective arterial spin labeling applied for flow territory mapping in various cerebrovascular diseases[J]. J Magn Reson Imaging, 2013, 38(2): 496-503. DOI: 10.1002/jmri.24041.
[59]
LI W B, XU F, SCHÄR M, et al. Whole-brain arteriography and venography: using improved velocity-selective saturation pulse trains[J]. Magn Reson Med, 2018, 79(4): 2014-2023. DOI: 10.1002/mrm.26864.
[60]
SUZUKI Y, HELLE M, KOKEN P, et al. Simultaneous acquisition of perfusion image and dynamic MR angiography using time-encoded pseudo-continuous ASL[J]. Magn Reson Med, 2018, 79(5): 2676-2684. DOI: 10.1002/mrm.26926.
[61]
BAN Q Q, QU H, WANG W, et al. Study on cerebral perfusion characteristic network of type 2 diabetes mellitus patients based on MR arterial spin labeling imaging[J]. Chin J Magn Reson Imag, 2024, 15(8): 73-77, 102. DOI: 10.12015/issn.1674-8034.2024.08.011.
[62]
RUSSO A, SILVESTRO M, TESSITORE A, et al. Arterial spin labeling MRI applied to migraine: current insights and future perspectives[J/OL]. J Headache Pain, 2023, 24(1): 71 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/37322466/. DOI: 10.1186/s10194-023-01597-y.
[63]
IGATA N, KAKEDA S, WATANABE K, et al. Utility of real-time prospective motion correction (PROMO) for segmentation of cerebral cortex on 3D T1-weighted imaging: Voxel-based morphometry analysis for uncooperative patients[J]. Eur Radiol, 2017, 27(8): 3554-3562. DOI: 10.1007/s00330-016-4730-7.
[64]
HOLMES J H, JEN M L, EISENMENGER L B, et al. Spatial dependency and the role of local susceptibility for velocity selective arterial spin labeling (VS-ASL) relative tagging efficiency using accelerated 3D radial sampling with a BIR-8 preparation[J]. Magn Reson Med, 2021, 86(1): 293-307. DOI: 10.1002/mrm.28726.
[65]
VAN DER PLAS M C E, SCHMID S, VERSLUIS M J, et al. Time-encoded golden angle radial arterial spin labeling: Simultaneous acquisition of angiography and perfusion data[J/OL]. NMR Biomed, 2021, 34(7): e4519 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/33939218/. DOI: 10.1002/nbm.4519.
[66]
SHIRZADI Z, STEFANOVIC B, CHAPPELL M A, et al. Enhancement of automated blood flow estimates (ENABLE) from arterial spin-labeled MRI[J]. J Magn Reson Imaging, 2018, 47(3): 647-655. DOI: 10.1002/jmri.25807.
[67]
VIDORRETA M, WANG Z, RODRÍGUEZ I, et al. Comparison of 2D and 3D single-shot ASL perfusion fMRI sequences[J/OL]. Neuroimage, 2013, 66: 662-671 [2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/23142069/. DOI: 10.1016/j.neuroimage.2012.10.087.

PREV Advances in the application of multimodal magnetic resonance imaging for nerve root assessment before and after minimally invasive surgery for lumbar disc herniation
NEXT No Records
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn