Share:
Share this content in WeChat
X
Special Focus
Three-dimensional magnetic resonance elastography for evaluating chemotherapy response and survival in advanced pancreatic cancer
DU Bai  SHI Yu 

Cite this article as: DU B, SHI Y. Three-dimensional magnetic resonance elastography for evaluating chemotherapy response and survival in advanced pancreatic cancer[J]. Chin J Magn Reson Imaging, 2025, 16(5): 14-21. DOI:10.12015/issn.1674-8034.2025.05.003.


[Abstract] Objective To investigate the clinical utility of baseline three-dimensional magnetic resonance elastography (3D-MRE) viscoelastic parameters in evaluating chemotherapy response and prognosis in patients with advanced pancreatic cancer (APC).Materials and Methods This prospective study enrolled patients with histologically confirmed APC between January 2022 and June 2024, all of whom underwent 3D-MRE scans prior to chemotherapy. Chemotherapy response was categorized into responders and non-responders based on RECIST 1.1 criteria. The Youden index was used to determine the optimal cut-off values for imaging parameters in predicting chemotherapy response. Univariate and multivariate logistic regression analyses were performed to identify independent predictors of chemotherapy response, while Cox proportional hazards models were used to analyze factors influencing progression-free survival (PFS) and overall survival (OS).Results A total of 59 patients were included, with 21 in the responder group and 38 in the non-responder group. The area under the curve (AUC) for baseline shear stiffness (SS) in diagnosing chemotherapy response was 0.771 (95% CI: 0.640 to 0.902), with an optimal cutoff value of 3.85 kPa. Multivariate logistic regression analysis identified SS ≥ 3.85 kPa as an independent predictor of poor chemotherapy response [odds ratio (OR) = 6.760, 95% CI: 1.197 to 38.174, P=0.030]. Cox regression analysis revealed that SS ≥ 3.85 kPa was independently associated with shorter OS [hazard ratio (HR) = 4.217, 95% CI: 1.796 to 9.889, P=0.001] and PFS (HR = 3.860, 95% CI: 1.801 to 8.273, P=0.001). Patients with SS ≥ 3.85 kPa had significantly shorter PFS (P < 0.001) and OS (P < 0.001).Conclusions Baseline SS measured by 3D-MRE is an independent predictor of chemotherapy response in APC patients, with higher baseline SS associated with poorer prognosis. As a non-invasive and quantitative biomechanical assessment tool, 3D-MRE holds promise as an important adjunct for personalized treatment in pancreatic cancer.
[Keywords] pancreatic ductal adenocarcinoma;advanced pancreatic cancer;magnetic resonance elastography;shear stiffness;chemotherapy;prognosis

DU Bai   SHI Yu*  

Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China

Corresponding author: SHI Y, E-mail: 18940259980@163.com

Conflicts of interest   None.

Received  2025-02-25
Accepted  2025-04-16
DOI: 10.12015/issn.1674-8034.2025.05.003
Cite this article as: DU B, SHI Y. Three-dimensional magnetic resonance elastography for evaluating chemotherapy response and survival in advanced pancreatic cancer[J]. Chin J Magn Reson Imaging, 2025, 16(5): 14-21. DOI:10.12015/issn.1674-8034.2025.05.003.

[1]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[2]
HAN B F, ZHENG R S, ZENG H M, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53. DOI: 10.1016/j.jncc.2024.01.006.
[3]
SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024[J]. CA A Cancer J Clin, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
[4]
MIZRAHI J D, SURANA R, VALLE J W, et al. Pancreatic cancer[J]. Lancet, 2020, 395(10242): 2008-2020. DOI: 10.1016/s0140-6736(20)30974-0.
[5]
TEMPERO M A, MALAFA M P, AL-HAWARY M, et al. Pancreatic adenocarcinoma, version 2.2021, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2021, 19(4): 439-457. DOI: 10.6004/jnccn.2021.0017.
[6]
BURRIS H A, MOORE M J, ANDERSEN J, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial[J]. J Clin Oncol, 2023, 41(36): 5482-5492. DOI: 10.1200/JCO.22.02777.
[7]
General Office of National Health Commission. Standard for diagnosis and treatment of pancreatic cancer(2022 edition)[J]. J Clin Hepatol, 2022, 38(5): 1006-1030. DOI: 10.3969/j.issn.1001-5256.2022.05.007.
[8]
BIFFI G, TUVESON D A. Diversity and biology of cancer-associated fibroblasts[J]. Physiol Rev, 2021, 101(1): 147-176. DOI: 10.1152/physrev.00048.2019.
[9]
MANDUCA A, BAYLY P J, EHMAN R L, et al. MR elastography: Principles, guidelines, and terminology[J]. Magn Reson Med, 2021, 85(5): 2377-2390. DOI: 10.1002/mrm.28627.
[10]
SONG Q K, SHI Y, GAO F, et al. Feasibility and reproducibility of multifrequency magnetic resonance elastography in healthy and diseased pancreases[J]. J Magn Reson Imaging, 2022, 56(6): 1769-1780. DOI: 10.1002/jmri.28158.
[11]
ZHANG X Y. Evaluation of interstitial fibrosis degree and prognosis of pancreatic ductal adenocarcinoma by magnetic resonance elastography[D]. Shenyang: China Medical University, 2020. DOI: 10.27652/d.cnki.gzyku.2020.001556.
[12]
PEPIN K M, CHEN J, GLASER K J, et al. MR elastography derived shear stiffness: a new imaging biomarker for the assessment of early tumor response to chemotherapy[J]. Magn Reson Med, 2014, 71(5): 1834-1840. DOI: 10.1002/mrm.24825.
[13]
EISENHAUER E A, THERASSE P, BOGAERTS J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)[J]. Eur J Cancer, 2009, 45(2): 228-247. DOI: 10.1016/j.ejca.2008.10.026.
[14]
AKKAYA H E, ERDEN A, ÖZ D K, et al. Magnetic resonance elastography: basic principles, technique, and clinical applications in the liver[J]. Diagn Interv Radiol, 2018, 24(6): 328-335. DOI: 10.5152/dir.2018.18186.
[15]
BHUIYAN E H, OZKAYA E, KENNEDY P, et al. Magnetic resonance elastography for noninvasive detection of liver fibrosis: is there an added value of 3D acquisition?[J]. Abdom Radiol, 2023, 48(11): 3420-3429. DOI: 10.1007/s00261-023-04036-3.
[16]
MD V K, MD J G, VICTORIA CHERNYAK MD M, et al. Biomechanical assessment of liver integrity: prospective evaluation of mechanical versus acoustic MR elastography[J]. J Magn Reson Imag, 2025, 61(4): 1890-1904. DOI: 10.1002/jmri.29560.
[17]
XU Y L, CAI X L, SHI Y, et al. Normative pancreatic stiffness levels and related influences established by magnetic resonance elastography in volunteers[J]. J Magn Reson Imaging, 2020, 52(2): 448-458. DOI: 10.1002/jmri.27052.
[18]
SHI Y, GLASER K J, VENKATESH S K, et al. Feasibility of using 3D MR elastography to determine pancreatic stiffness in healthy volunteers[J]. J Magn Reson Imaging, 2015, 41(2): 369-375. DOI: 10.1002/jmri.24572.
[19]
WASSENAAR N P M, VAN SCHELT A S, SCHRAUBEN E M, et al. MR elastography of the pancreas: bowel preparation and repeatability assessment in pancreatic cancer patients and healthy controls[J]. J Magn Reson Imaging, 2024, 59(5): 1582-1592. DOI: 10.1002/jmri.28918.
[20]
STEINKOHL E, BERTOLI D, HANSEN T M, et al. Practical and clinical applications of pancreatic magnetic resonance elastography: a systematic review[J]. Abdom Radiol, 2021, 46(10): 4744-4764. DOI: 10.1007/s00261-021-03143-3.
[21]
LIU Q F, LIAO Q, ZHAO Y P. Chemotherapy and tumor microenvironment of pancreatic cancer[J/OL]. Cancer Cell Int, 2017, 17: 68 [2025-02-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC5498917/. DOI: 10.1186/s12935-017-0437-3.
[22]
GUO J, SAVIC L J, HILLEBRANDT K H, et al. MR elastography in cancer[J]. Invest Radiol, 2023, 58(8): 578-586. DOI: 10.1097/rli.0000000000000971.
[23]
DZOBO K, DANDARA C. The extracellular matrix: its composition, function, remodeling, and role in tumorigenesis[J/OL]. Biomimetics, 2023, 8(2): 146 [2025-02-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10123695/. DOI: 10.3390/biomimetics8020146.
[24]
NIA H T, MUNN L L, JAIN R K. Physical traits of cancer[J/OL]. Science, 2020, 370(6516): eaaz0868 [2025-02-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8274378/. DOI: 10.1126/science.aaz0868.
[25]
NIA H T, MUNN L L, JAIN R K. Probing the physical hallmarks of cancer[J/OL]. Nat Methods, 2025 [2025-02-24]. https://pubmed.ncbi.nlm.nih.gov/39815103/. DOI: 10.1038/s41592-024-02564-4.
[26]
CARVALHO T M A, DI MOLFETTA D, GRECO M R, et al. Tumor microenvironment features and chemoresistance in pancreatic ductal adenocarcinoma: insights into targeting physicochemical barriers and metabolism as therapeutic approaches[J/OL]. Cancers, 2021, 13(23): 6135 [2025-02-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8657427/. DOI: 10.3390/cancers13236135.
[27]
AGRAWAL A, JAVANMARDI Y, WATSON S A, et al. Mechanical signatures in cancer metastasis[J/OL]. NPJ Biol Phys Mech, 2025, 2(1): 3 [2025-02-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11794153/. DOI: 10.1038/s44341-024-00007-x.
[28]
ALVAREZ R, MUSTEANU M, GARCIA-GARCIA E, et al. Stromal disrupting effects of nab-paclitaxel in pancreatic cancer[J]. Br J Cancer, 2013, 109(4): 926-933. DOI: 10.1038/bjc.2013.415.
[29]
VINCENT P, WANG H X, NIESKOSKI M, et al. High-resolution ex vivo elastography to characterize tumor stromal heterogeneity in situ in pancreatic adenocarcinoma[J]. IEEE Trans Biomed Eng, 2020, 67(9): 2490-2496. DOI: 10.1109/TBME.2019.2963562.
[30]
SHI S, LIANG C, XU J, et al. The strain ratio as obtained by endoscopic ultrasonography elastography correlates with the stroma proportion and the prognosis of local pancreatic cancer[J]. Ann Surg, 2020, 271(3): 559-565. DOI: 10.1097/SLA.0000000000002998.
[31]
SONG Q K, ZHONG S L, LIU Y Y, et al. MR elastography for evaluation of pathological grade of pancreatic ductal adenocarcinoma[J]. Chin J Magn Reson Imag, 2022, 13(3): 26-30. DOI: 10.12015/issn.1674-8034.2022.03.006.
[32]
WANG Z J, ZHANG T T, AN C, et al. Estimation of fractional extracellular space at CT for predicting chemotherapy response and survival in pancreatic ductal adenocarcinoma[J]. AJR Am J Roentgenol, 2020, 215(3): 610-616. DOI: 10.2214/AJR.19.22462.
[33]
LE O, JAVADI S, BHOSALE P R, et al. CT features predictive of nodal positivity at surgery in pancreatic cancer patients following neoadjuvant therapy in the setting of dual energy CT[J]. Abdom Radiol, 2021, 46(6): 2620-2627. DOI: 10.1007/s00261-020-02917-5.
[34]
TANG W, LIU W, LI H M, et al. Quantitative dynamic contrast-enhanced MR imaging for the preliminary prediction of the response to gemcitabine-based chemotherapy in advanced pancreatic ductal carcinoma[J/OL]. Eur J Radiol, 2019, 121: 108734 [2025-02-24]. https://pubmed.ncbi.nlm.nih.gov/31743881/. DOI: 10.1016/j.ejrad.2019.108734.
[35]
LI D F, PENG Q, WANG L Y, et al. Preoperative prediction of disease-free survival in pancreatic ductal adenocarcinoma patients after R0 resection using contrast-enhanced CT and CA19-9[J]. Eur Radiol, 2024, 34(1): 509-524. DOI: 10.1007/s00330-023-09980-8.
[36]
YOO J, LEE J M, JOO I, et al. Post-neoadjuvant treatment pancreatic cancer resectability and outcome prediction using CT, 18F-FDG PET/MRI and CA 19-9[J/OL]. Cancer Imaging, 2023, 23(1): 49 [2025-02-24]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10201764/. DOI: 10.1186/s40644-023-00565-8.

PREV Diagnostic value of non-contrast MRI in evaluating benign and malignant mural nodules of intraductal papillary mucinous neoplasms of the pancreas
NEXT Multiparametric diffusion models for histological characterization of pancreatic cancer: Insights from animal and clinical studies
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn