Share:
Share this content in WeChat
X
Special Focus
Multiparametric diffusion models for histological characterization of pancreatic cancer: Insights from animal and clinical studies
LI Jiali  LÜ Chenxi  MA Siyuan  LI Zhen 

Cite this article as: LI J L, LÜ C X, MA S Y, et al. Multiparametric diffusion models for histological characterization of pancreatic cancer: Insights from animal and clinical studies[J]. Chin J Magn Reson Imaging, 2025, 16(5): 22-29. DOI:10.12015/issn.1674-8034.2025.05.004.


[Abstract] Objective To investigate the histological relevance and potential clinical value of multiparametric diffusion-weighted imaging (DWI) parameters for pancreatic cancer through animal experiments and a prospective clinical study.Materials and Methods Twelve xenograft mouse models of pancreatic cancer and twenty-five patients with histologically confirmed pancreatic ductal adenocarcinoma were enrolled. Multi-model DWI analysis was performed using the mono-exponential model (Mono), intravoxel incoherent motion (IVIM) model, diffusion kurtosis imaging (DKI), stretched exponential model (SEM), fractional-order calculus (FROC) model, and continuous-time random walk (CTRW) model. The extracted parameters included Mono_ADC, IVIM_D, DKI_MD, SEM_D, FROC_D, CTRW_D, IVIM_D*, IVIM_f, DKI_MK, SEM_α, FROC_β, FROC_mμ, CTRW_α, and CTRW_β. Histological correlations with DWI parameters were evaluated using Masson and Ki-67 staining in the animal cohort. In the clinical study, differences in DWI parameters between pancreatic cancer and pancreatic normal tissue were assessed, and ROC analysis was used to evaluate discriminative ability.Results In animal studies, DKI_MD was significantly negatively correlated with the degree of fibrosis (r = -0.85, P < 0.001), while CTRW_β (r = -0.82, P = 0.001) and FROC_β (r = -0.78, P = 0.002) were closely associated with Ki-67 expression. In clinical data, DWI parameters including DKI_MD, IVIM_f, and FROC_β differed significantly between pancreatic cancer and normal tissues (P < 0.05). DKI_MD showed the highest diagnostic performance individually (AUC = 0.757, 95% CI: 0.615 to 0.867), while the combined model (DKI_MD + FROC_β) achieved improved accuracy (AUC = 0.866, 95% CI: 0.739 to 0.945) with significantly better sensitivity (76%) and specificity (88%).Conclusions Multiparametric analysis using non-Gaussian DWI models provides valuable insights into the microstructural features of pancreatic cancer. Among them, DKI_MD and FROC_β demonstrated significant advantages in quantifying fibrosis and heterogeneity, indicating their potential as imaging biomarkers.
[Keywords] pancreatic cancer;magnetic resonance imaging;diffusion-weighted imaging;diffusion kurtosis imaging

LI Jiali1   LÜ Chenxi2   MA Siyuan2   LI Zhen1*  

1 Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

2 Second Clinical College, Huazhong University of Science and Technology, Wuhan 430030, China

Corresponding author: LI Z, E-mail: zhenli@hust.edu.cn

Conflicts of interest   None.

Received  2025-04-25
Accepted  2025-05-10
DOI: 10.12015/issn.1674-8034.2025.05.004
Cite this article as: LI J L, LÜ C X, MA S Y, et al. Multiparametric diffusion models for histological characterization of pancreatic cancer: Insights from animal and clinical studies[J]. Chin J Magn Reson Imaging, 2025, 16(5): 22-29. DOI:10.12015/issn.1674-8034.2025.05.004.

[1]
MIZRAHI J D, SURANA R, VALLE J W, et al. Pancreatic cancer[J]. Lancet, 2020, 395(10242): 2008-2020. DOI: 10.1016/S0140-6736(20)30974-0.
[2]
ZHOU C F, ZHU X T, LIU N X, et al. B-lymphoid tyrosine kinase-mediated FAM83A phosphorylation elevates pancreatic tumorigenesis through interacting with β-catenin[J/OL]. Signal Transduct Target Ther, 2023, 8(1): 66 [2025-05-10]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9935901/. DOI: 10.1038/s41392-022-01268-5.
[3]
BILREIRO C, ANDRADE L, MARQUES R M, et al. Diffusion-weighted imaging for determining response to neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis[J]. Eur Radiol, 2024, 34(5): 3238-3248. DOI: 10.1007/s00330-023-10381-0.
[4]
KAGA T, NODA Y, ASANO M, et al. Diffusion-weighted echo planar imaging with compressed SENSE (EPICS-DWI) for pancreas assessment: A multicenter study[J/OL]. Magn Reson Med Sci, 2024 [2025-05-10]. https://pubmed.ncbi.nlm.nih.gov/39111877/. DOI: 10.2463/mrms.mp.2024-0046.
[5]
CHEN J, LIU S X, TANG Y D, et al. Diagnostic performance of diffusion MRI for pancreatic ductal adenocarcinoma characterisation: A meta-analysis[J/OL]. Eur J Radiol, 2021, 139: 109672 [2025-05-10]. https://pubmed.ncbi.nlm.nih.gov/33819806/. DOI: 10.1016/j.ejrad.2021.109672.
[6]
SHENG R F, ZHANG Y F, SUN W, et al. Staging chronic hepatitis B related liver fibrosis with a fractional order Calculus diffusion model[J]. Acad Radiol, 2022, 29(7): 951-963. DOI: 10.1016/j.acra.2021.07.005.
[7]
GUO R, LU F, LIN J, et al. Multi-b-value DWI to evaluate the synergistic antiproliferation and anti-heterogeneity effects of bufalin plus sorafenib in an orthotopic HCC model[J/OL]. Eur Radiol Exp, 2024, 8(1): 43 [2025-05-10]. https://pubmed.ncbi.nlm.nih.gov/38467904/. DOI: 10.1186/s41747-024-00448-y.
[8]
CHEN J J, GUO Y X, GUO Y L, et al. Preoperative assessment of microvascular invasion of hepatocellular carcinoma using non-Gaussian diffusion-weighted imaging with a fractional order Calculus model: A pilot study[J]. Magn Reson Imaging, 2023, 95: 110-117. DOI: 10.1016/j.mri.2021.09.003.
[9]
MEHTA R, BU Y Y, ZHONG Z, et al. Characterization of breast lesions using multi-parametric diffusion MRI and machine learning[J/OL]. Phys Med Biol, 2023, 68(8) [2025-05-10]. https://pubmed.ncbi.nlm.nih.gov/36808921/. DOI: 10.1088/1361-6560/acbde0.
[10]
ZHOU M, BAO D Y, HUANG H Y, et al. Utilization of diffusion-weighted derived mathematical models to predict prognostic factors of resectable rectal cancer[J]. Abdom Radiol (NY), 2024, 49(9): 3282-3293. DOI: 10.1007/s00261-024-04239-2.
[11]
LIU X, WANG Y F, QI X H, et al. Reproducibility study of intravoxel incoherent motion and apparent diffusion coefficient parameters in normal pancreas[J]. World J Gastrointest Surg, 2024, 16(7): 2031-2039. DOI: 10.4240/wjgs.v16.i7.2031.
[12]
BI Q, DENG Y C, XU N, et al. Differentiation of early-stage endometrial carcinoma from benign endometrial lesions: a comparative study of six diffusion models[J]. Quant Imaging Med Surg, 2025, 15(1): 121-134. DOI: 10.21037/qims-24-896.
[13]
LI W E, CHAI R M. Research progresses of non-Gaussian of diffusion weighted imaging models in hepatocellular carcinoma[J]. Chin J Magn Reson Imag, 2024, 15(9): 194-200. DOI: 10.12015/issn.1674-8034.2024.09.034.
[14]
LI J, ZHANG H K, BEI T X, et al. Advanced diffusion-weighted MRI models for preoperative prediction of lymph node metastasis in resectable gastric cancer[J]. Abdom Radiol (NY), 2025, 50(3): 1057-1068. DOI: 10.1007/s00261-024-04559-3.
[15]
WANG F, SUN Y N, ZHANG B T, et al. Value of fractional-order Calculus (FROC) model diffusion-weighted imaging combined with simultaneous multi-slice (SMS) acceleration technology for evaluating benign and malignant breast lesions[J/OL]. BMC Med Imaging, 2024, 24(1): 190 [2025-05-10]. https://pubmed.ncbi.nlm.nih.gov/39075336/. DOI: 10.1186/s12880-024-01368-4.
[16]
ZHANG Z H, ZHANG Y Q, HU F X, et al. Value of diffusion kurtosis MR imaging and conventional diffusion weighed imaging for evaluating response to first-line chemotherapy in unresectable pancreatic cancer[J/OL]. Cancer Imaging, 2024, 24(1): 29 [2025-05-10]. https://pubmed.ncbi.nlm.nih.gov/38409049/. DOI: 10.1186/s40644-024-00674-y.
[17]
LI J L, LIANG L L, YU H, et al. Whole-tumor histogram analysis of non-Gaussian distribution DWI parameters to differentiation of pancreatic neuroendocrine tumors from pancreatic ductal adenocarcinomas[J]. Magn Reson Imaging, 2019, 55: 52-59. DOI: 10.1016/j.mri.2018.09.017.
[18]
FU R, WANG C B, YIN T J, et al. A novel and promising therapeutic approach for treating pancreatic cancer: Nectin-4-targeted antibody-drug conjugates alone or combined with autophagy inhibitors[J/OL]. Int J Mol Med, 2025, 55(4): 66 [2025-05-10]. https://pubmed.ncbi.nlm.nih.gov/40017149/. DOI: 10.3892/ijmm.2025.5507.
[19]
MENG Y S, CHEN C, LIN R G, et al. Mitochondria-targeting virus-like gold nanoparticles enhance chemophototherapeutic efficacy against pancreatic cancer in a xenograft mouse model[J]. Int J Nanomedicine, 2024, 19: 14059-14074. DOI: 10.2147/IJN.S497346.
[20]
WANG Y, ZHANG L, ZHAO G S, et al. Homologous targeting nanoparticles for enhanced PDT against osteosarcoma HOS cells and the related molecular mechanisms[J/OL]. J Nanobiotechnology, 2022, 20(1): 83 [2025-05-10]. https://pubmed.ncbi.nlm.nih.gov/35177075/. DOI: 10.1186/s12951-021-01201-y.
[21]
YUAN G J, LIAO Z Y, LIANG P, et al. Noninvasive grading of renal interstitial fibrosis and prediction of annual renal function loss in chronic kidney disease: the optimal solution of seven MR diffusion models[J/OL]. Ren Fail, 2025, 47(1): 2480751 [2025-05-10]. https://pubmed.ncbi.nlm.nih.gov/40133226/. DOI: 10.1080/0886022X.2025.2480751.
[22]
WANG F Q, XU X H, XU J W, et al. Exploring the value of multiparametric quantitative MRI in the assessment of pancreatic ductal adenocarcinoma fibrosis grading[J/OL]. Eur Radiol, 2024 [2025-05-10]. https://pubmed.ncbi.nlm.nih.gov/39699670/. DOI: 10.1007/s00330-024-11246-w.
[23]
LI H, TIAN C J, ZHANG X. The value of apparent diffusion coefficient combined with serum carbohydrate antigen 199 in the diagnosis and staging of pancreatic cancer[J]. Chin J Surg Integr Tradit West Med, 2023, 29(3): 362-368.
[24]
HAO J G, LEI Y Y, TAN Y H, et al. Value of diffusion-weighted imaging and IVIM quantitative parameters in differentiating pancreatic cancer from mass-forming chronic pancreatitis[J]. J Pract Radiol, 2020, 36(3): 406-409. DOI: 10.3969/j.issn.1002-1671.2020.03.017.
[25]
DE ROBERTIS R, CARDOBI N, ORTOLANI S, et al. Intravoxel incoherent motion diffusion-weighted MR imaging of solid pancreatic masses: reliability and usefulness for characterization[J]. Abdom Radiol (NY), 2019, 44(1): 131-139. DOI: 10.1007/s00261-018-1684-z.
[26]
WANG H M, SHU J, XU L L, et al. The value of perfusion fraction in IVIM-DWI in differentiating pancreatic cancer from pancreatic neuroendocrine tumor: A meta-analysis[J]. Sichuan Med J, 2022, 43(5): 477-482. DOI: 10.16252/j.cnki.issn1004-0501-2022.05.012.
[27]
LIU Z Q, LIU A L, SUN M Y. The value of IVIM in the diagnosis of pancreatic carcinoma[J]. Chin Comput Med Imag, 2020, 26(2): 140-144. DOI: 10.19627/j.cnki.cn31-1700/th.2020.02.008.
[28]
MAYER P, JIANG Y X, KUDER T A, et al. Diffusion kurtosis imaging-a superior approach to assess tumor-stroma ratio in pancreatic ductal adenocarcinoma[J/OL]. Cancers (Basel), 2020, 12(6): 1656 [2025-05-10]. https://pubmed.ncbi.nlm.nih.gov/32580519/. DOI: 10.3390/cancers12061656.
[29]
WANG S N, JIN X X, BA Y W, et al. Differentiating rectal cancer grades using virtual magnetic resonance elastography and fractional order Calculus diffusion model[J/OL]. BMC Cancer, 2025, 25(1): 734 [2025-05-10]. https://pubmed.ncbi.nlm.nih.gov/40251492/. DOI: 10.1186/s12885-025-13983-7.
[30]
FENG C, WANG Y C, DAN G Y, et al. Evaluation of a fractional-order Calculus diffusion model and bi-parametric VI-RADS for staging and grading bladder urothelial carcinoma[J]. Eur Radiol, 2022, 32(2): 890-900. DOI: 10.1007/s00330-021-08203-2.
[31]
ZHANG B T, WANG F, SUN Y N, et al. The value of whole-volume histogram analysis of DWI based on fractional-order Calculus model in differential diagnosis of benign and malignant breast lesions[J]. Radiol Pract, 2025, 40(3): 331-338. DOI: 10.13609/j.cnki.1000-0313.2025.03.008.
[32]
LI C H, WEN Y, XIE J H, et al. Preoperative prediction of VETC in hepatocellular carcinoma using non-Gaussian diffusion-weighted imaging at high b values: a pilot study[J/OL]. Front Oncol, 2023, 13: 1167209 [2025-05-10]. https://pubmed.ncbi.nlm.nih.gov/37305565/. DOI: 10.3389/fonc.2023.1167209.
[33]
SAPONJSKI D, DJURIC-STEFANOVIC A, JOVANOVIC M M, et al. Utility of MRI in detection of PET-CT proven local recurrence of pancreatic adenocarcinoma after surgery[J/OL]. Med Oncol, 2024, 41(2): 47 [2025-05-10]. https://pubmed.ncbi.nlm.nih.gov/38175487/. DOI: 10.1007/s12032-023-02271-8.

PREV Three-dimensional magnetic resonance elastography for evaluating chemotherapy response and survival in advanced pancreatic cancer
NEXT Non-invasive preoperative prediction of histological differentiation and Ki-67 expression level in pancreatic ductal adenocarcinoma based on mDixon-Quant sequence
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn