Share:
Share this content in WeChat
X
Special Focus
A preliminary study on quantitative parameter prediction of HIF-1α in pancreatic ductal adenocarcinoma using diffusion kurtosis imaging
WANG Fangqing  CHEN Yinghui  SUN Yang  WANG Yong  YU Dexin 

Cite this article as: WANG F Q, CHEN Y H, SUN Y, et al. A preliminary study on quantitative parameter prediction of HIF-1α in pancreatic ductal adenocarcinoma using diffusion kurtosis imaging[J]. Chin J Magn Reson Imaging, 2025, 16(5): 37-43. DOI:10.12015/issn.1674-8034.2025.05.006.


[Abstract] Objective To explore the value of diffusion kurtosis imaging (DKI) quantitative parameters in predicting the grading of hypoxia inducible factor-1α (HIF-1α) in pancreatic ductal adenocarcinoma (PDAC).Materials and Methods A retrospective analysis was conducted on the data of 61 PDAC patients who underwent preoperative 1.5 T MRI examination and were confirmed by surgical pathology. According to the postoperative pathological immunohistochemical score, the patients were divided into a HIF-1α low expression group (32 cases) and a HIF-1α high expression group (29 cases). Two radiologists measured the diffusion weighted imaging (DWI) quantitative parameters, including apparent diffusion coefficient (ADC), mean diffusion coefficient (MD), and mean kurtosis (MK), for two groups of lesions. Independent sample t-test Mann Whitney U test or chi square test were used to analyze the differences in clinical pathological data between two groups, and intra class correlation coefficient (ICC) was used to test the consistency of the measurements of each parameter value by two radiologists. Evaluate the discriminative power of statistically significant parameters through receiver operating characteristic (ROC) curves, DeLong test, Net reclassification improvement and integrated discrimination improvement indicators.Results The low tumor differentiation in the high HIF-1α expression group was significantly higher than that in the low HIF-1α expression group (P = 0.031). The quantitative MRI data measured by two radiologists showed good consistency (ICC values > 0.75). The MD value of the HIF-1α high expression group [(1.17 ± 0.26) × 10-3 mm2/s] was lower than that of the HIF-1α low expression group [(1.52 ± 0.39) × 10-3 mm2/s], the MK value of the HIF-1α high expression group (0.72 ± 0.11) was higher than that of the HIF-1α low expression group (0.61 ± 0.11), the difference between the two groups was statistically significant (all P < 0.001). No statistically significant difference in ADC values between the two groups. The AUC, sensitivity, and specificity of MD value, MK value, MD value + MK value, and MD value + MK value + differentiation degree in predicting high and low HIF-1α expression are 0.751, 74.7%, 64.8%; 0.814, 84.4%, 72.4%; 0.862, 82.8%, 78.7%; 0.872, 78.1%, 86.2%. The DeLong test showed that the predictive power of MD value + MK value + differentiation degree was only statistically different from MD value (P = 0.037), no statistically significant difference from other parameters (P > 0.05). The NRI and IDI results showed that MD value + MK value + differentiation degree significantly improved the predictive ability of HIF-1α, and was superior to MD value, MK value and MD value + MK value (P < 0.05).Conclusions The combination of MD value, MK value and tumor differentiation degree can help predict different HIF-1α expression in PDAC tumors, providing a basis for preoperative risk stratification and personalized treatment.
[Keywords] pancreatic ductal adenocarcinoma;magnetic resonance imaging;diffusion kurtosis imaging;diffusion-weighted imaging;hypoxia-inducible factor-1α

WANG Fangqing1   CHEN Yinghui1   SUN Yang2   WANG Yong3   YU Dexin1*  

1 Department of Radiology, Qilu Hospital, Shandong University, Jinan 250012, China

2 Department of Radiology, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng 252000, China

3 Department of Pathology, Qilu Hospital, Shandong University, Jinan 250012, China

Corresponding author: YU D X, E-mail: yudexin0330@sina.com

Conflicts of interest   None.

Received  2025-04-07
Accepted  2025-05-09
DOI: 10.12015/issn.1674-8034.2025.05.006
Cite this article as: WANG F Q, CHEN Y H, SUN Y, et al. A preliminary study on quantitative parameter prediction of HIF-1α in pancreatic ductal adenocarcinoma using diffusion kurtosis imaging[J]. Chin J Magn Reson Imaging, 2025, 16(5): 37-43. DOI:10.12015/issn.1674-8034.2025.05.006.

[1]
SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024[J]. CA A Cancer J Clin, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
[2]
LV X, LI J C, ZHANG C H, et al. The role of hypoxia-inducible factors in tumor angiogenesis and cell metabolism[J]. Genes Dis, 2016, 4(1): 19-24. DOI: 10.1016/j.gendis.2016.11.003.
[3]
LUO W H, QIU J D, ZHENG L F, et al. Novel therapies targeting hypoxia mechanism to treat pancreatic cancer[J]. Chin J Cancer Res, 2021, 33(2): 216-231. DOI: 10.21147/j.issn.1000-9604.2021.02.09.
[4]
NARO C, RUTA V, SETTE C. Splicing dysregulation: hallmark and therapeutic opportunity in pancreatic cancer[J/OL]. Trends Mol Med, 2024: S1471-4914(24)00308-3 [2025-04-07]. https://pubmed.ncbi.nlm.nih.gov/39648052/. DOI: 10.1016/j.molmed.2024.11.007.
[5]
ZOA A, YANG Y J, HUANG W J, et al. High expression of hypoxia-inducible factor 1-alpha predicts poor prognosis in pancreatic ductal adenocarcinoma: a meta-analysis and database validation protocol[J]. Transl Cancer Res, 2022, 11(9): 3080-3091. DOI: 10.21037/tcr-22-787.
[6]
COWMAN S J, KOH M Y. Revisiting the HIF switch in the tumor and its immune microenvironment[J]. Trends Cancer, 2022, 8(1): 28-42. DOI: 10.1016/j.trecan.2021.10.004.
[7]
NAGARAJU G P, ZHU S J, KO J E, et al. Antiangiogenic effects of a novel synthetic curcumin analogue in pancreatic cancer[J]. Cancer Lett, 2015, 357(2): 557-565. DOI: 10.1016/j.canlet.2014.12.007.
[8]
KANG G B, HU M, REN H, et al. VHH212 nanobody targeting the hypoxia-inducible factor 1α suppresses angiogenesis and potentiates gemcitabine therapy in pancreatic cancer in vivo[J]. Cancer Biol Med, 2021, 18(3): 772-787. DOI: 10.20892/j.issn.2095-3941.2020.0568.
[9]
SHI S Y, LUO Y J, WANG M, et al. Tumor fibrosis correlates with the survival of patients with pancreatic adenocarcinoma and is predictable using clinicoradiological features[J]. Eur Radiol, 2022, 32(9): 6314-6326. DOI: 10.1007/s00330-022-08745-z.
[10]
RAMAN S P, HORTON K M, FISHMAN E K. Multimodality imaging of pancreatic cancer-computed tomography, magnetic resonance imaging, and positron emission tomography[J]. Cancer J, 2012, 18(6): 511-522. DOI: 10.1097/PPO.0b013e318274a461.
[11]
JENSEN J H, HELPERN J A, RAMANI A, et al. Diffusional kurtosis imaging: The quantification of non-Gaussian water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med, 2005, 53(6): 1432-1440. DOI: 10.1002/mrm.20508.
[12]
HENRIQUES R N, JESPERSEN S N, JONES D K, et al. Toward more robust and reproducible diffusion kurtosis imaging[J]. Magn Reson Med, 2021, 86(3): 1600-1613. DOI: 10.1002/mrm.28730.
[13]
DUAN Z Q, TAO J, LIU W Y, et al. Correlation of IVIM/DKI parameters with hypoxia biomarkers in fibrosarcoma murine models: direct control of MRI and pathological sections[J]. Acad Radiol, 2024, 31(3): 1014-1023. DOI: 10.1016/j.acra.2023.08.021.
[14]
LI X W, YANG L, WANG Q M, et al. Soft tissue sarcomas: IVIM and DKI correlate with the expression of HIF-1α on direct comparison of MRI and pathological slices[J]. Eur Radiol, 2021, 31(7): 4669-4679. DOI: 10.1007/s00330-020-07526-w.
[15]
VAN ROESSEL S, KASUMOVA G G, VERHEIJ J, et al. International validation of the eighth edition of the American joint committee on cancer (AJCC) TNM staging system in patients with resected pancreatic cancer[J/OL]. JAMA Surg, 2018, 153(12): e183617 [2025-04-07]. https://pubmed.ncbi.nlm.nih.gov/30285076/. DOI: 10.1001/jamasurg.2018.3617.
[16]
NAGTEGAAL I D, ODZE R D, KLIMSTRA D, et al. The 2019 WHO classification of tumours of the digestive system[J]. Histopathology, 2020, 76(2): 182-188. DOI: 10.1111/his.13975.
[17]
YAN B, MA Q F, TAN W F, et al. Expression of HIF-1α is a predictive marker of the efficacy of neoadjuvant chemotherapy for locally advanced cervical cancer[J]. Oncol Lett, 2020, 20(1): 841-849. DOI: 10.3892/ol.2020.11596.
[18]
SLAWSKI J, JAŚKIEWICZ M, BARTON A, et al. Regulation of the HIF switch in human endothelial and cancer cells[J/OL]. Eur J Cell Biol, 2024, 103(2): 151386 [2025-04-07]. https://pubmed.ncbi.nlm.nih.gov/38262137/. DOI: 10.1016/j.ejcb.2024.151386.
[19]
SHI Y, GILKES D M. HIF-1 and HIF-2 in cancer: structure, regulation, and therapeutic prospects[J/OL]. Cell Mol Life Sci, 2025, 82(1): 44 [2025-04-07]. https://pubmed.ncbi.nlm.nih.gov/39825916/. DOI: 10.1007/s00018-024-05537-0.
[20]
RASHID M, ZADEH L R, BARADARAN B, et al. Up-down regulation of HIF-1α in cancer progression[J/OL]. Gene, 2021, 798: 145796 [2025-04-07]. https://pubmed.ncbi.nlm.nih.gov/34175393/. DOI: 10.1016/j.gene.2021.145796.
[21]
KOONG A C, MEHTA V K, LE Q T, et al. Pancreatic tumors show high levels of hypoxia[J]. Int J Radiat Oncol Biol Phys, 2000, 48(4): 919-922. DOI: 10.1016/s0360-3016(00)00803-8.
[22]
SCHWÖRER S, CIMINO F V, ROS M, et al. Hypoxia potentiates the inflammatory fibroblast phenotype promoted by pancreatic cancer cell-derived cytokines[J]. Cancer Res, 2023, 83(10): 1596-1610. DOI: 10.1158/0008-5472.CAN-22-2316.
[23]
ABUDOUKERIMU A, HASIMU A, ABUDOUKERIMU A, et al. HIF-1α regulates the progression of cervical cancer by targeting YAP/TAZ[J/OL]. J Oncol, 2022, 2022: 3814809 [2025-04-07]. https://pubmed.ncbi.nlm.nih.gov/35664561/. DOI: 10.1155/2022/3814809.
[24]
MASOUD G N, LI W. HIF-1α pathway: role, regulation and intervention for cancer therapy[J]. Acta Pharm Sin B, 2015, 5(5): 378-389. DOI: 10.1016/j.apsb.2015.05.007.
[25]
MARTÍN-NOGUEROL T, DÍAZ-ANGULO C, VILANOVA C, et al. How to do and evaluate DWI and DCE-MRI sequences for diabetic foot assessment[J]. Skeletal Radiol, 2024, 53(10): 1979-1990. DOI: 10.1007/s00256-023-04518-x.
[26]
LI X S, WU S D, LI D C, et al. Intravoxel incoherent motion combined with dynamic contrast-enhanced perfusion MRI of early cervical carcinoma: correlations between multimodal parameters and HIF-1α expression[J]. J Magn Reson Imaging, 2019, 50(3): 918-929. DOI: 10.1002/jmri.26604.
[27]
HUANG Z Q, XU X Q, MENG X J, et al. Correlations between ADC values and molecular markers of Ki-67 and HIF-1α in hepatocellular carcinoma[J]. Eur J Radiol, 2015, 84(12): 2464-2469. DOI: 10.1016/j.ejrad.2015.09.013.
[28]
YAMADA S, MORINE Y, IMURA S, et al. Prognostic prediction of apparent diffusion coefficient obtained by diffusion-weighted MRI in mass-forming intrahepatic cholangiocarcinoma[J]. J Hepatobiliary Pancreat Sci, 2020, 27(7): 388-395. DOI: 10.1002/jhbp.732.
[29]
LU J X, LUAN Y Y, QIN F Y, et al. Evaluation of hypoxic microenvironment of cervical squamous cell carcinoma via magnetic resonance functional imaging[J]. Chin J Med Imag, 2023, 31(9): 967-972. DOI: 10.3969/i.issn.1005-5185.2023.09.014.
[30]
MA T, YANG S L, JING H Y, et al. Apparent diffusion coefficients in prostate cancer: correlation with molecular markers Ki-67, HIF-1α and VEGF[J/OL]. NMR Biomed, 2018, 31(3) []. https://pubmed.ncbi.nlm.nih.gov/29315957/. DOI: 10.1002/nbm.3884.
[31]
LIU Z L, SUN Y Q, TONG T. Quantitative evaluation of hypoxia in tumor microenvironment by functional magnetic resonance imaging[J]. Radiol Pract, 2023, 38(10): 1234-1241. DOI: 10.13609/j.cnki.1000-0313.2023.10.002.
[32]
DE SANTIS S, GABRIELLI A, PALOMBO M, et al. Non-Gaussian diffusion imaging: a brief practical review[J]. Magn Reson Imaging, 2011, 29(10): 1410-1416. DOI: 10.1016/j.mri.2011.04.006.
[33]
SHAN H Y, KE T F, BAO S S, et al. Evaluation of functional magnetic resonance APT and DKI imaging for breast cancer[J/OL]. Cancer Cell Int, 2024, 24(1): 401 [2025-04-07]. https://pubmed.ncbi.nlm.nih.gov/39695640/. DOI: 10.1186/s12935-024-03587-9.
[34]
MAEHARA M. Development of voxel-based optimization diffusion kurtosis imaging (DKI) and comparison with conventional DKI[J]. Radiol Phys Technol, 2019, 12(3): 290-298. DOI: 10.1007/s12194-019-00523-9.
[35]
LUO Y W, FANG Y, ZENG H X, et al. HIF1α counteracts TGFβ1-driven TSP1 expression in endothelial cells to stimulate angiogenesis in the hypoxic tumor microenvironment[J]. Cancer Res, 2025, 85(1): 69-83. DOI: 10.1158/0008-5472.CAN-24-2324.
[36]
LIU Z L, CHEN H H, ZHENG L L, et al. Angiogenic signaling pathways and anti-angiogenic therapy for cancer[J/OL]. Signal Transduct Target Ther, 2023, 8(1): 198 [2025-04-07]. https://pubmed.ncbi.nlm.nih.gov/37169756/. DOI: 10.1038/s41392-023-01460-1.
[37]
MAYER P, JIANG Y X, KUDER T A, et al. Diffusion kurtosis imaging-a superior approach to assess tumor-stroma ratio in pancreatic ductal adenocarcinoma[J/OL]. Cancers (Basel), 2020, 12(6): 1656 [2025-04-07]. https://pubmed.ncbi.nlm.nih.gov/32580519/. DOI: 10.3390/cancers12061656.

PREV Non-invasive preoperative prediction of histological differentiation and Ki-67 expression level in pancreatic ductal adenocarcinoma based on mDixon-Quant sequence
NEXT A feasibility study of magnetization transfer imaging on the evaluation of fibrosis in pancreatic duct adenocarcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn