Share:
Share this content in WeChat
X
Special Focus
A feasibility study of magnetization transfer imaging on the evaluation of fibrosis in pancreatic duct adenocarcinoma
SHEN Zhiqiu  YANG Mingming  LÜ Junxin  ZHANG Jinggang  CHEN Jie 

Cite this article as: SHEN Z Q, YANG M M, LÜ J X, et al. A feasibility study of magnetization transfer imaging on the evaluation of fibrosis in pancreatic duct adenocarcinoma[J]. Chin J Magn Reson Imaging, 2025, 16(5): 44-48. DOI:10.12015/issn.1674-8034.2025.05.007.


[Abstract] Objective To evaluate the ability of magnetization transfer imaging (MTI) in assessing the fibrosis of pancreatic ductal adenocarcinoma (PDAC).Materials and Methods The clinical, imaging and pathological data of 53 patients with PDAC were analyzed retrospectively. All patients underwent MTI examination before surgery and the MTR values of the tumors were measured. Masson staining was used to evaluate tumor fibrosis. The percentage of tumor fibrous area were calculated by ImageJ software. Based on the degree of fibrosis, all patients were divided into two groups: high and low fibrosis. Independent sample t test and one-way ANOVA were used to compare the differences of the magnetic transfer rate (MTR) values and general characteristics between high- and low-grade fibrosis groups. Spearman correlation analysis was used to evaluate the correlation between MTR value and fibrosis degree of PDAC. Receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficiency of MTR value for PDAC fibrosis classification.Results The MTR value of the low-grade fibrosis group was (0.158 ± 0.053), and that of the high-grade fibrosis group was (0.230 ± 0.063). There was a significant difference of MTR values between the two groups (t = -4.528, P < 0.001), while other general characteristics were not statistically significant (P > 0.05). ROC curve analysis showed that the AUC value of the MTR in evaluating the fibrosis of PDAC patients was 0.822. When a threshold was 0.496, the sensitivity and the specificity were 87.5% and 62.1%, respectively.Conclusions As a non-invasive imaging index, MTR value has a potential application value in the evaluation of PDAC fibrosis.
[Keywords] pancreatic ductal adenocarcinoma;magnetization transfer;magnetic resonance imaging;quantitative analysis;fibrosis

SHEN Zhiqiu1, 2   YANG Mingming1   LÜ Junxin1   ZHANG Jinggang1   CHEN Jie1*  

1 Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou 213000, China

2 Department of Radiology, Yancheng Tinghu District People's Hospital, Yancheng 224000, China

Corresponding author: CHEN J, E-mail: slqyuer@126.com

Conflicts of interest   None.

Received  2024-11-29
Accepted  2025-03-10
DOI: 10.12015/issn.1674-8034.2025.05.007
Cite this article as: SHEN Z Q, YANG M M, LÜ J X, et al. A feasibility study of magnetization transfer imaging on the evaluation of fibrosis in pancreatic duct adenocarcinoma[J]. Chin J Magn Reson Imaging, 2025, 16(5): 44-48. DOI:10.12015/issn.1674-8034.2025.05.007.

[1]
CONNOR A A, GALLINGER S. Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data[J]. Nat Rev Cancer, 2022, 22(3): 131-142. DOI: 10.1038/s41568-021-00418-1.
[2]
AHMEDIN JEMAL DVM P. Cancer statistics, 2024[J]. CA A Cancer J Clin, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
[3]
XU C M, JUN E, OKUGAWA Y, et al. A circulating panel of circRNA biomarkers for the noninvasive and early detection of pancreatic ductal adenocarcinoma[J/OL]. Gastroenterology, 2024, 166(1): 178-190.e16 [2024-12-06]. https://pubmed.ncbi.nlm.nih.gov/37839499/. DOI: 10.1053/j.gastro.2023.09.050.
[4]
HO W J, JAFFEE E M, ZHENG L. The tumour microenvironment in pancreatic cancer: clinical challenges and opportunities[J]. Nat Rev Clin Oncol, 2020, 17: 527-540. DOI: 10.1038/s41571-020-0363-5.
[5]
SHI S, LIU R, ZHOU J, et al. Development and validation of a CT-based radiomics model to predict survival-graded fibrosis in pancreatic ductal adenocarcinoma[J]. Int J Surg, 2025, 111(1): 950-961. DOI: 10.1097/js9.0000000000002059.
[6]
MENG Y H, ZHANG H, LI Q, et al. Magnetic resonance radiomics and machine-learning models: an approach for evaluating tumor-stroma ratio in patients with pancreatic ductal adenocarcinoma[J]. Acad Radiol, 2022, 29(4): 523-535. DOI: 10.1016/j.acra.2021.08.013.
[7]
LI X Y, HOU W T, XIAO C X, et al. Panoramic tumor microenvironment in pancreatic ductal adenocarcinoma[J]. Cell Oncol, 2024, 47(5): 1561-1578. DOI: 10.1007/s13402-024-00970-6.
[8]
YEE E J, TORPHY R J, THIELEN O N, et al. Radiologic occult metastases in pancreatic cancer: analysis of risk factors and survival outcomes in the age of contemporary neoadjuvant multi-agent chemotherapy[J]. Ann Surg Oncol, 2024, 31(9): 6127-6137. DOI: 10.1245/s10434-024-15443-1.
[9]
HEGER U, MARTENS A, SCHILLINGS L, et al. Myofibroblastic CAF density, not activated stroma index, indicates prognosis after neoadjuvant therapy of pancreatic carcinoma[J/OL]. Cancers, 2022, 14(16): 3881 [2024-09-13]. https://pubmed.ncbi.nlm.nih.gov/36010874/. DOI: 10.3390/cancers14163881.
[10]
WANG H W, MA X Q, GAO S, et al. Application and research progress of patient-derived organoids in the multimodality treatment of pancreatic cancer[J]. Chin J Surg, 2024, 62(7): 710-713. DOI: 10.3760/cma.j.cn112139-20240403-00164.
[11]
FUKUI H, ONISHI H, OTA T, et al. Pancreatic fibrosis assessment and association with pancreatic cancer: comparison with the extracellular volume fraction[J/OL]. Clin Radiol, 2024, 79(11): e1356-e1365 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/39266374/. DOI: 10.1016/j.crad.2024.08.007.
[12]
PREISNER F, BEHNISCH R, FOESLEITNER O, et al. Reliability and reproducibility of sciatic nerve magnetization transfer imaging and T2 relaxometry[J]. Eur Radiol, 2021, 31(12): 9120-9130. DOI: 10.1007/s00330-021-08072-9.
[13]
MOOSHAGE C M, SCHIMPFLE L, TSILINGIRIS D, et al. Magnetization transfer ratio of the sciatic nerve differs between patients in type 1 and type 2 diabetes[J/OL]. Eur Radiol Exp, 2024, 8(1): 6 [2025-01-10]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10774497/. DOI: 10.1186/s41747-023-00405-1.
[14]
LÓPEZ K, NEJI R, BUSTIN A, et al. Quantitative magnetization transfer imaging for non-contrast enhanced detection of myocardial fibrosis[J]. Magn Reson Med, 2021, 85(4): 2069-2083. DOI: 10.1002/mrm.28577.
[15]
GANDHI D B, SAEEDI M AL, KRIER J D, et al. Evaluation of renal fibrosis using magnetization transfer imaging at 1.5T and 3T in a porcine model of renal artery stenosis[J/OL]. J Clin Med, 2023, 12(8): 2956 [2024-08-16]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10140905/. DOI: 10.3390/jcm12082956.
[16]
DE KOCK I, BOS S, DELRUE L, et al. MRI texture analysis of T2-weighted images is preferred over magnetization transfer imaging for readily longitudinal quantification of gut fibrosis[J]. Eur Radiol, 2023, 33(9): 5943-5952. DOI: 10.1007/s00330-023-09624-x.
[17]
LI Z L, CHEN Z H, ZHANG R N, et al. Comparative analysis of [18F] f-fapi pet/ct, [18F] f-fdg pet/ct and magnetization transfer mr imaging to detect intestinal fibrosis in Crohn's disease: A prospective animal model and human cohort study[J]. Eur J Nucl Med Mol Imaging, 2024, 51(7): 1856-1868. DOI: 10.1007/s00259-024-06644-7.
[18]
LI W G, ZHANG Z L, NICOLAI J, et al. Magnetization transfer MRI in pancreatic cancer xenograft models[J]. Magn Reson Med, 2012, 68(4): 1291-1297. DOI: 10.1002/mrm.24127.
[19]
HU H, CHEN L, ZHOU J, et al. Multiparametric magnetic resonance imaging for differentiating active from inactive thyroid-associated ophthalmopathy: Added value from magnetization transfer imaging[J/OL]. Eur J Radiol, 2022, 151: 110295 [2024-08-13]. https://www.sciencedirect.com/science/article/abs/pii/S0720048X22001450. DOI: 10.1016/j.ejrad.2022.110295.
[20]
DEEN S S, MCLEAN M A, GILL A B, et al. Magnetization transfer imaging of ovarian cancer: initial experiences of correlation with tissue cellularity and changes following neoadjuvant chemotherapy[J/OL]. BJR Open, 2022, 4(1): 20210078 [2024-08-16]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9459873/. DOI: 10.1259/bjro.20210078.
[21]
ZHU D T, WU W H, YU W J, et al. Ultrashort echo time magnetization transfer imaging of knee cartilage and meniscus after long-distance running[J]. Eur Radiol, 2023, 33(7): 4842-4854. DOI: 10.1007/s00330-023-09462-x.
[22]
DUAN K L, ZHOU H H, XU W N, et al. Evaluation of tumor fibrosis in pancreatic ductal adenocarcinoma by 2-D shear wave elastography: A pilot study[J]. Ultrasound Med Biol, 2023, 49(9): 2119-2125. DOI: 10.1016/j.ultrasmedbio.2023.06.003.
[23]
YAN J, WANG L, HUANG Y L, et al. Feasibility study on quantification method of fat infiltration in thigh muscle based on axial T1WI image[J]. Chin J Magn Reson Imag, 2021, 12(12): 49-54. DOI: 10.12015/issn.1674-8034.2021.12.010.
[24]
ERSTAD D J, SOJOODI M, TAYLOR M S, et al. Fibrotic response to neoadjuvant therapy predicts survival in pancreatic cancer and is measurable with collagen-targeted molecular MRI[J]. Clin Cancer Res, 2020, 26(18): 5007-5018. DOI: 10.1158/1078-0432.CCR-18-1359.
[25]
LIU Q, ZHANG J G, JIANG M, et al. Evaluating the histopathology of pancreatic ductal adenocarcinoma by intravoxel incoherent motion-diffusion weighted imaging comparing with diffusion-weighted imaging[J/OL]. Front Oncol, 2021, 11: 670085 [2024-06-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8261286/. DOI: 10.3389/fonc.2021.670085.
[26]
MURAOKA N, UEMATSU H, KIMURA H, et al. Apparent diffusion coefficient in pancreatic cancer: characterization and histopathological correlations[J]. J Magn Reson Imaging, 2008, 27(6): 1302-1308. DOI: 10.1002/jmri.21340.
[27]
ASSLÄNDER J, GULTEKIN C, MAO A, et al. Rapid quantitative magnetization transfer imaging: Utilizing the hybrid state and the generalized Bloch model[J]. Magn Reson Med, 2024, 91(4): 1478-1497. DOI: 10.1002/mrm.29951.
[28]
XUE Y P, MA Y J, WU M, et al. Quantitative 3D ultrashort echo time magnetization transfer imaging for evaluation of knee cartilage degeneration in vivo[J]. J Magn Reson Imaging, 2021, 54(4): 1294-1302. DOI: 10.1002/jmri.27659.
[29]
LEPPÄNEN J, LINDHOLM V, ISOHOOKANA J, et al. Tenascin C, fibronectin, and tumor-stroma ratio in pancreatic ductal adenocarcinoma[J]. Pancreas, 2019, 48(1): 43-48. DOI: 10.1097/MPA.0000000000001195.
[30]
HELMS E, KATHRINA ONATE M, SHERMAN M H. Fibroblast heterogeneity in the pancreatic tumor microenvironment[J]. Cancer Discov, 2020, 10(5): 648-656. DOI: 10.1158/2159-8290.CD-19-1353.
[31]
PEREIRA B A, RITCHIE S, CHAMBERS C R, et al. Temporally resolved proteomics identifies nidogen-2 as a cotarget in pancreatic cancer that modulates fibrosis and therapy response[J/OL]. Sci Adv, 2024, 10(27): eadl1197 [2025-01-09]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11221519/. DOI: 10.1126/sciadv.adl1197.
[32]
KISELEV V G, KÖRZDÖRFER G, GALL P. Toward quantification: microstructure and magnetic resonance fingerprinting[J]. Invest Radiol, 2021, 56(1): 1-9. DOI: 10.1097/RLI.0000000000000738.
[33]
FERRAUTO G, TRIPEPI M, DI GREGORIO E, et al. Detection of U-87 tumor cells by RGD-functionalized/Gd-containing giant unilamellar vesicles in magnetization transfer contrast magnetic resonance images[J]. Invest Radiol, 2021, 56(5): 301-312. DOI: 10.1097/RLI.0000000000000742.
[34]
HECHT E M, LIU M Z, PRINCE M R, et al. Can diffusion-weighted imaging serve as a biomarker of fibrosis in pancreatic adenocarcinoma?[J]. J Magn Reson Imaging, 2017, 46(2): 393-402. DOI: 10.1002/jmri.25581.
[35]
MALAGI A V, SHIVAJI S, KANDASAMY D, et al. Pancreatic mass characterization using IVIM-DKI MRI and machine learning-based multi-parametric texture analysis[J/OL]. Bioengineering, 2023, 10(1): 83 [2024-09-06]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9854749/. DOI: 10.3390/bioengineering10010083.
[36]
ZENG P E, MA L, LIU J F, et al. The diagnostic value of intravoxel incoherent motion diffusion-weighted imaging for distinguishing nonhypervascular pancreatic neuroendocrine tumors from pancreatic ductal adenocarcinomas[J/OL]. Eur J Radiol, 2022, 150: 110261 [2024-08-11]. https://pubmed.ncbi.nlm.nih.gov/35316674/. DOI: 10.1016/j.ejrad.2022.110261.
[37]
MENG Y H, ZHANG H, LI Q, et al. CT radiomics and machine-learning models for predicting tumor-stroma ratio in patients with pancreatic ductal adenocarcinoma[J/OL]. Front Oncol, 2021, 11: 707288 [2024-09-12]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8606777/. DOI: 10.3389/fonc.2021.707288.

PREV A preliminary study on quantitative parameter prediction of HIF-1α in pancreatic ductal adenocarcinoma using diffusion kurtosis imaging
NEXT Study on the characteristics of resting-state and dynamic functional connectivity of the bilateral amygdala in generalized anxiety disorder: A functional MRI research
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn