Share:
Share this content in WeChat
X
Clinical Article
Study on the characteristics of resting-state and dynamic functional connectivity of the bilateral amygdala in generalized anxiety disorder: A functional MRI research
ZHANG Lei  WANG Xiaoling  SUN Jifei  CAO Jiudong  HONG Yang  LUO Ping  SUN Li  LÜ Xueyu  LIU Jun  LAI Jingling  FANG Jiliang  LANG Xuesen 

Cite this article as: ZHANG L, WANG X L, SUN J F, et al. Study on the characteristics of resting-state and dynamic functional connectivity of the bilateral amygdala in generalized anxiety disorder: A functional MRI research[J]. Chin J Magn Reson Imaging, 2025,16(5): 49-53, 61. DOI:10.12015/issn.1674-8034.2025.05.008.


[Abstract] Objective To observe the abnormal characteristics of generalized anxiety disorder (GAD) through resting-state functional connectivity (rs-FC) and dynamic functional connectivity (dFC) methods.Materials and Methods A total of 35 patients with GAD and 35 healthy controls (HC) were prospectively recruited. Functional magnetic resonance imaging (fMRI) data were collected for both groups, using the amygdala as a seed point to observe the abnormalities in rs-FC and dFC of the bilateral amygdala. Additionally, a correlation analysis was conducted between the differential brain regions and clinical symptoms.Results In terms of rs-FC, the GAD group exhibited reduced rs-FC between the left amygdala and the left orbitofrontal cortex, left postcentral gyrus, left superior occipital gyrus, and left middle temporal (t = -2.236, -2.220, -2.222, -2.230, P < 0.005) gyrus compared to the HC group. The right amygdala also demonstrated decreased rs-FC with the left middle frontal gyrus, left supplementary motor area, and left postcentral gyrus (t = -2.236, -2.220, -2.222, -2.230, P < 0.005) in the GAD group. Regarding dFC, the GAD group showed reduced dFC between the left amygdala and the right middle temporal gyrus (t = -2.236, -2.220, P < 0.005), as well as the left precuneus compared to HCs. The right amygdala's dFC with the right orbitofrontal cortex and right insula (t = -2.297, -2.296, P < 0.005) was also lower in the GAD group. Furthermore, there was a negative correlation between the rs-FC value of the right amygdala and the left middle frontal gyrus and the Hamilton Depression Scale 17 (HAMD-17) score in the GAD group (r = -0.425, P = 0.013).Conclusions Patients with GAD exhibit abnormal static and dynamic functional connectivity of the amygdala with local brain regions, primarily involving the reward network, default mode network, frontoparietal network, and visual network. This study provides valuable insights into the neurobiological mechanisms underlying the abnormal brain functional activity in GAD.
[Keywords] generalized anxiety disorder;amygdala;resting-state functional connectivity;dynamic functional connectivity;magnetic resonance imaging

ZHANG Lei1   WANG Xiaoling1   SUN Jifei1, 2   CAO Jiudong1   HONG Yang1   LUO Ping1   SUN Li1   LÜ Xueyu1   LIU Jun1   LAI Jingling1   FANG Jiliang1   LANG Xuesen1*  

1 Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China

2 Department of Neurology, Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing 101300, China

Corresponding author: LANG X S, E-mail: wolangba@163.com

Conflicts of interest   None.

Received  2024-11-16
Accepted  2025-05-10
DOI: 10.12015/issn.1674-8034.2025.05.008
Cite this article as: ZHANG L, WANG X L, SUN J F, et al. Study on the characteristics of resting-state and dynamic functional connectivity of the bilateral amygdala in generalized anxiety disorder: A functional MRI research[J]. Chin J Magn Reson Imaging, 2025,16(5): 49-53, 61. DOI:10.12015/issn.1674-8034.2025.05.008.

[1]
ZIMMERMANN M, MERTON C, FLAHIVE J, et al. Comparing the effect of two systems-level interventions on perinatal generalized anxiety disorder and posttraumatic stress disorder symptoms[J/OL]. Am J Obstet Gynecol MFM, 2024, 6(8): 101426 [2024-11-16]. https://doi.org/10.1016/j.ajogmf.2024.101426. DOI: 10.1016/j.ajogmf.2024.101426.
[2]
SLEE A, NAZARETH I, BONDARONEK P, LIU Y, et al. Pharmacological treatments for generalised anxiety disorder: a systematic review and network meta-analysis[J]. Lancet, 2019, 393(10173): 768-777. DOI: 10.1016/S0140-6736(18)31793-8.
[3]
ZYGOURIS N C, VLACHOS F, STAMOULIS G I. ERPs in Children and Adolescents with Generalized Anxiety Disorder: Before and after an Intervention Program[J/OL]. Brain Sci, 2022, 12(9): 1174 [2024-11-16]. https://doi.org/10.3390/brainsci12091174. DOI: 10.3390/brainsci12091174.
[4]
ZWIR I, ARNEDO J, MESA A, et al. Temperament & Character account for brain functional connectivity at rest: A diathesis-stress model of functional dysregulation in psychosis[J]. Mol Psychiatry, 2023, 28(6): 2238-2253. DOI: 10.1038/s41380-023-02039-6.
[5]
ZOU Y, YU T, ZHU L, et al. Altered dynamic functional connectivity of nucleus accumbens subregions in major depressive disorder: the interactive effect of childhood trauma and diagnosis[J/OL]. Soc Cogn Affect Neurosci, 2024, 19(1): nsae053 [2024-11-16]. https://doi.org/10.1093/scan/nsae053. DOI: 10.1093/scan/nsae053.
[6]
HUTCHISON R M, WOMELSDORF T, ALLEN E A, et al. Dynamic functional connectivity: promise, issues, and interpretations[J]. Neuroimage, 2013, 80: 360-378. DOI: 10.1016/j.neuroimage.2013.05.079.
[7]
KOLESAR T A, BILEVICIUS E, WILSON A D, et al. Systematic review and meta-analyses of neural structural and functional differences in generalized anxiety disorder and healthy controls using magnetic resonance imaging[J/OL]. Neuroimage Clin, 2019, 24: 102016 [2024-11-16]. https://doi.org/10.1016/j.nicl.2019.102016. DOI: 10.1016/j.nicl.2019.102016.
[8]
DU Y, LI H, XIAO H, et al. Illness Severity Moderated Association Between Trait Anxiety and Amygdala-Based Functional Connectivity in Generalized Anxiety Disorder[J/OL]. Front Behav Neurosci, 2021, 15: 637426 [2024-11-16]. https://doi.org/10.3389/fnbeh.2021.637426. DOI: 10.3389/fnbeh.2021.637426.
[9]
CHEN T, CHEN T, ZHANG Y, et al. Bilateral effect of acupuncture on cerebrum and cerebellum in ischaemic stroke patients with hemiparesis: a randomised clinical and neuroimaging trial[J]. Stroke Vasc Neurol, 2024, 9(3): 306-317. DOI: 10.1136/svn-2023-002785.
[10]
WANG Q, CHEN B, ZHONG X, et al. Static and dynamic functional connectivity variability of the anterior-posterior hippocampus with subjective cognitive decline[J/OL]. Alzheimers Res Ther, 2022, 14(1): 122 [2024-11-16]. https://doi.org/10.1186/s13195-022-01066-9. DOI: 10.1186/s13195-022-01066-9.
[11]
XIAO X, SUN J, TIAN J, et al. Altered resting-state and dynamic functional connectivity of hypothalamic in first-episode depression: A functional magnetic resonance imaging study[J/OL]. Psychiatry Res Neuroimaging, 2024, 345: 111906 [2024-11-16]. https://doi.org/10.1016/j.pscychresns.2024.111906. DOI: 10.1016/j.pscychresns.2024.111906.
[12]
ROY A K, FUDGE J L, KELLY C, et al. Intrinsic functional connectivity of amygdala-based networks in adolescent generalized anxiety disorder[J/OL]. J Am Acad Child Adolesc Psychiatry, 2013, 52(3): 290-299.e2 [2024-11-16]. https://doi.org/10.1016/j.jaac.2012.12.010. DOI: 10.1016/j.jaac.2012.12.010.
[13]
CULLEN K R, VIZUETA N, THOMAS K M, et al. Amygdala functional connectivity in young women with borderline personality disorder[J]. Brain Connect, 2011, 1(1): 61-71. DOI: 10.1089/brain.2010.0001.
[14]
SHELINE Y I, PRICE J L, YAN Z, et al. Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus[J]. Proc Natl Acad Sci U S A, 2010, 107(24): 11020-11025. DOI: 10.1073/pnas.1000446107.
[15]
MONTAGUE P R, BERNS G S. Neural economics and the biological substrates of valuation[J]. Neuron, 2002, 36(2): 265-284. DOI: 10.1016/s0896-6273(02)00974-1.
[16]
WANG H Y, YOU H L, SONG C L, et al. Shared and distinct prefrontal cortex alterations of implicit emotion regulation in depression and anxiety: An fNIRS investigation[J]. J Affect Disord, 2024, 354: 126-135. DOI: 10.1016/j.jad.2024.03.032.
[17]
WEARNE T A, PARKER L M, FRANKLIN J L, et al. Behavioral sensitization to methamphetamine induces specific interneuronal mRNA pathology across the prelimbic and orbitofrontal cortices[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2017, 77: 42-48. DOI: 10.1016/j.pnpbp.2017.03.018.
[18]
ROLLS E T. The functions of the orbitofrontal cortex[J]. Brain Cogn, 2004, 55(1): 11-29. DOI: 10.1016/S0278-2626(03)00277-X.
[19]
PRICE J L, DREVETS W C. Neural circuits underlying the pathophysiology of mood disorders[J]. Trends Cogn Sci, 2012, 16(1): 61-71. DOI: 10.1016/j.tics.2011.12.011.
[20]
ZHANG T, XIE X, LI Q, et al. Hypogyrification in Generalized Anxiety Disorder and Associated with Insomnia Symptoms[J]. Nat Sci Sleep, 2022, 14: 1009-1019. DOI: 10.2147/NSS.S358763.
[21]
ZHANG Q, YU L L, LIU S Q, et al. Progress of fMRl Research on "Degi" of Acupuncture and Our Considerations About further Studies[J]. Acupuncture Research, 2018, 43(5): 330-334. DOI: 10.13702/j.1000-0607.170077.
[22]
ZWEERINGS J, HUMMEL B, KELLER M, et al. Neurofeedback of core language network nodes modulates connectivity with the default-mode network: A double-blind fMRI neurofeedback study on auditory verbal hallucinations[J]. Neuroimage, 2019, 189: 533-542. DOI: 10.1016/j.neuroimage.2019.01.058.
[23]
SUN J F, CHEN L M, WANG Z, et al. Amplitude of low-frequency fluctuations of resting-state functional MRl in recurrent and first-episode depression[J]. International Journal of Medical Radiology, 2022, 45(4): 385-389, 395. DOI: 10.19300/j.2022.L19443.
[24]
ZHANG R, VOLKOW N D. Brain default-mode network dysfunction in addiction[J]. Neuroimage, 2019, 200: 313-331. DOI: 10.1016/j.neuroimage.2019.06.036.
[25]
ZHU T, WANG Z, WU W, et al. Altered brain functional networks in schizophrenia with persistent negative symptoms: an activation likelihood estimation meta-analysis[J/OL]. Front Hum Neurosci, 2023, 17: 1204632 [2024-11-16]. https://doi.org/10.3389/fnhum.2023.1204632. DOI: 10.3389/fnhum.2023.1204632.
[26]
DUAN X P, CHENG X Y. The resting-state brain function in patients with anxiety disorders[J]. International Journal of Medical Radiology, 2023, 50(1): 57-59. DOI: 10.13479/j.cnki.jip.2023.01.016.
[27]
LI Q, ZHANG T, MENG J, et al. Abnormal hemispheric specialization and inter-hemispheric functional cooperation in generalized anxiety disorder[J/OL]. Behav Brain Res, 2023, 455: 114660 [2024-11-16]. https://doi.org/10.1016/j.bbr.2023.114660. DOI: 10.1016/j.bbr.2023.114660.
[28]
BASHFORD-LARGO J, ZHANG R, MATHUR A, et al. Reduced cortical volume of the default mode network in adolescents with generalized anxiety disorder[J]. Depress Anxiety, 2022, 39(6): 485-495. DOI: 10.1002/da.23252.
[29]
ZUO Z, RAN S, WANG Y, et al. Altered Structural Covariance Among the Dorsolateral Prefrontal Cortex and Amygdala in Treatment-Naïve Patients With Major Depressive Disorder[J/OL]. Front Psychiatry, 2018, 9: 323 [2024-11-16]. https://doi.org/10.3389/fpsyt.2018.00323. DOI: 10.3389/fpsyt.2018.00323.
[30]
ZOETMULDER R, GAVVES E, CAAN M, Marquering H. Domain- and task-specific transfer learning for medical segmentation tasks[J/OL]. Comput Methods Programs BiomedM2022, 214, 106539 [2024-11-16]. https://doi.org/10.1016/j.cmpb.2021.106539. DOI: 10.1016/j.cmpb.2021.106539.
[31]
ZHUANG X, XU J, LUO X, et al. Cardiac segmentation on late gadolinium enhancement MRI: A benchmark study from multi-sequence cardiac MR segmentation challenge[J/OL]. Med Image Anal, 2022, 81: 102528 [2024-11-16]. https://doi.org/10.1016/j.media.2022.102528. DOI: 10.1016/j.media.2022.102528.
[32]
NORTHOFF G. Anxiety Disorders and the Brain's Resting State Networks: From Altered Spatiotemporal Synchronization to Psychopathological Symptoms[J]. Adv Exp Med Biol, 2020, 1191: 71-90. DOI: 10.1007/978-981-32-9705-0_5.
[33]
MA Z, WANG C, HINES C S, et al. Frontoparietal network abnormalities of gray matter volume and functional connectivity in patients with generalized anxiety disorder[J]. Psychiatry Res Neuroimaging, 2019, 286: 24-30. DOI: 10.1016/j.pscychresns.2019.03.001.
[34]
ZENG X X, FENG C W, ZHANG M H, et al. Exploring the central mechanism of mind-requlation electroacupuncture in treatment of chronic fatigue syndrome with anxiety and depression comorbidity based on functional magnetic resonance imaging[J]. Chinese Acupuncture & Moxibustion, 2024, 44(1): 3-11. DOI: 10.13703/j.0255-2930.20230603-k0003.
[35]
LI B P, LI C L, SU S S, et al. A fMRl study on brain function of acupuncture at Taichong acupoint on anxiety patients[J]. Chinese Imaging Journal of Integrated Traditional and Western Medicine, 2022, 20(1): 16-20, 35. DOI: 10.3969/j.issn.1672-0512.2022.01.004.
[36]
DAI X J, GONG H H, WANG Y X, et al. Gender differences in brain regional homogeneity of healthy subjects after normal sleep and after sleep deprivation: a resting-state fMRI study[J]. Sleep Med, 2012, 13(6): 720-727. DOI: 10.1016/j.sleep.2011.09.019.
[37]
ZULEGER T M, SLUTSKY-GANESH A B, GROOMS D R, et al. High magnitude exposure to repetitive head impacts alters female adolescent brain activity for lower extremity motor control[J/OL]. Brain Res, 2024, 1828: 148785 [2024-11-16]. https://doi.org/10.1016/j.brainres.2024.148785. DOI: 10.1016/j.brainres.2024.148785.
[38]
MOON C M, JEONG G W. Functional neuroanatomy on the working memory under emotional distraction in patients with generalized anxiety disorder[J]. Psychiatry Clin Neurosci, 2015, 69(10): 609-619. DOI: 10.1111/pcn.12295.
[39]
KARIM H, TUDORASCU D L, AIZENSTEIN H, et al. Emotion Reactivity and Cerebrovascular Burden in Late-Life GAD: A Neuroimaging Study[J]. Am J Geriatr Psychiatry, 2016, 24(11): 1040-1050. DOI: 10.1016/j.jagp.2016.07.015.

PREV A feasibility study of magnetization transfer imaging on the evaluation of fibrosis in pancreatic duct adenocarcinoma
NEXT Assessment of attention deficit symptoms in ADHD based on T1W-MRI radiomics brain network
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn