Share:
Share this content in WeChat
X
Clinical Article
The diffusion kurtosis imaging analysis of white matter microstructural features in children with attention deficit hyperactivity disorder
LIU Shipeng  CHENG Meiying  LU Yu  LI Sike  WANG Changhao  SHEN Yanyong  ZHOU Liang  FENG Liujuan  ZHAO Xin 

Cite this article as: LIU S P, CHENG M Y, LU Y, et al. The diffusion kurtosis imaging analysis of white matter microstructural features in children with attention deficit hyperactivity disorder[J]. Chin J Magn Reson Imaging, 2025, 16(5): 62-67, 87. DOI:10.12015/issn.1674-8034.2025.05.010.


[Abstract] Objective To explore the microstructural characteristics of white matter fiber tracts in children with attention deficit hyperactivity disorder (ADHD) using diffusion kurtosis imaging (DKI) technology.Materials and Methods This study prospectively analysed 29 children with ADHD [mean age: (8.31 ± 1.25) years], newly diagnosed at our institution, and 27 healthy control (HC) children [mean age: (8.85 ± 1.21) years]. All participants underwent conventional magnetic resonance imaging (MRI) and DKI scans. Children in the ADHD group were additionally assessed using the Swanson, Nolan, and Pelham Ⅳ (SNAP-Ⅳ) scale. Tract-based spatial statistics (TBSS) were employed to analyze white matter tract alterations in ADHD. Post-processing yielded diffusion tensor and diffusion kurtosis parameters, which were compared between groups. Significant parameters were correlated with SNAP-Ⅳ scores.Results Compared to HC, ADHD children exhibited significantly reduced fractional anisotropy (FA) values (P < 0.05, corrected for multiple comparisons) in the splenium, genu, and body of the corpus callosum; bilateral posterior thalamic radiations (including optic radiations); right cingulum, right inferior longitudinal fasciculus (ILF), right inferior fronto-occipital fasciculus (IFOF), right posterior corona radiata, right external capsule, and right posterior limb of the internal capsule; left anterior/superior corona radiata, left anterior/posterior limbs of the internal capsule; and fornix. No significant differences were observed in other parameters (P > 0.05). Correlation analysis revealed negative associations between FA values in the splenium of the corpus callosum (r = -0.390, P = 0.018) and the right ILF/IFOF (r = -0.374, P = 0.023) with hyperactivity-impulsivity scores on the SNAP-Ⅳ.Conclusions DKI reveals microstructural abnormalities in the brains of children with ADHD. Reduced FA in the splenium of the corpus callosum and right ILF and IFOF correlates with hyperactivity-impulsivity symptoms. DKI may provide novel insights into white matter abnormalities in ADHD.
[Keywords] children;attention deficit hyperactivity disorder;white matter;diffusion kurtosis imaging;tract-based spatial statistics;magnetic resonance imaging

LIU Shipeng1, 2, 3   CHENG Meiying1, 2, 3   LU Yu1, 2, 3   LI Sike1, 2, 3   WANG Changhao1, 2, 3   SHEN Yanyong1, 2, 3   ZHOU Liang1, 2, 3   FENG Liujuan1, 2, 3   ZHAO Xin1, 2, 3*  

1 Department of Medical Imaging, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China

2 Henan International Joint Laboratory of Neuromedical Imaging, Zhengzhou 450052, China

3 Henan Provincial Key Laboratory of Pediatric Neuroimaging Medicine, Zhengzhou 450052, China

Corresponding author: ZHAO X, E-mail: zdsfyzx@zzu.edu.cn

Conflicts of interest   None.

Received  2024-12-11
Accepted  2025-05-10
DOI: 10.12015/issn.1674-8034.2025.05.010
Cite this article as: LIU S P, CHENG M Y, LU Y, et al. The diffusion kurtosis imaging analysis of white matter microstructural features in children with attention deficit hyperactivity disorder[J]. Chin J Magn Reson Imaging, 2025, 16(5): 62-67, 87. DOI:10.12015/issn.1674-8034.2025.05.010.

[1]
SALARI N, GHASEMI H, ABDOLI N, et al. The global prevalence of ADHD in children and adolescents: a systematic review and meta-analysis[J/OL]. Ital J Pediatr, 2023, 49(1): 48 [2024-12-11]. https://doi.org/10.1186/s13052-023-01456-1. DOI: 10.1186/s13052-023-01456-1.
[2]
LI F, CUI Y, LI Y, et al. Prevalence of mental disorders in school children and adolescents in China: diagnostic data from detailed clinical assessments of 17, 524 individuals[J]. J Child Psychol Psychiatry, 2022, 63(1): 34-46. DOI: 10.1111/jcpp.13445.
[3]
WOLRAICH M L, HAGAN J F, ALLAN C, et al. Clinical Practice Guideline for the Diagnosis, Evaluation, and Treatment of Attention-Deficit/Hyperactivity Disorder in Children and Adolescents[J/OL]. Pediatrics, 2019, 144(4): e20192528 [2024-12-11]. https://pubmed.ncbi.nlm.nih.gov/31570648/. DOI: 10.1542/peds.2019-2528.
[4]
MOONEY M A, RYABININ P, MORTON H, et al. Joint polygenic and environmental risks for childhood attention-deficit/hyperactivity disorder (ADHD) and ADHD symptom dimensions[J/OL]. JCPP Adv, 2023, 3(2): e12152 [2024-12-11]. https://pubmed.ncbi.nlm.nih.gov/37753156/. DOI: 10.1002/jcv2.12152.
[5]
UCHIDA M, DISALVO M, WALSH D, et al. The Heritability of ADHD in Children of ADHD Parents: A Post-hoc Analysis of Longitudinal Data[J]. J Atten Disord, 2023, 27(3): 250-257. DOI: 10.1177/10870547221136251.
[6]
DEMIRCAN K, CHILLON T S, JENSEN R C, et al. Maternal selenium deficiency during pregnancy in association with autism and ADHD traits in children: The Odense Child Cohort[J]. Free Radic Biol Med, 2024, 220: 324-332. DOI: 10.1016/j.freeradbiomed.2024.05.001.
[7]
CONNAUGHTON M, WHELAN R, O'HANLON E, et al. White matter microstructure in children and adolescents with ADHD[J/OL]. NeuroImage, 2022, 33: 102957 [2024-12-11]. https://doi.org/10.1016/j.nicl.2022.102957. DOI: 10.1016/j.nicl.2022.102957.
[8]
JENSEN J H, HELPERN J A. MRI quantification of non-Gaussian water diffusion by kurtosis analysis[J]. NMR Biomed, 2010, 23(7): 698-710. DOI: 10.1002/nbm.1518.
[9]
FARRHER E, GRINBERG F, KHECHIASHVILI T, et al. Spatiotemporal Patterns of White Matter Maturation after Pre-Adolescence: A Diffusion Kurtosis Imaging Study[J/OL]. Brain Sci, 2024, 14(5): 495 [2024-12-11]. https://doi.org/10.3390/brainsci14050495. DOI: 10.3390/brainsci14050495.
[10]
CHEN J, LI H, ZHANG S, et al. Study of Effect of Sympathetic Nerve on Children's Brain Diseases Based on Analysis of Magnetic Resonance Imaging Kurtosis[J]. World Neurosurg, 2020, 138: 740-748. DOI: 10.1016/j.wneu.2020.01.035
[11]
ADISETIYO V, TABESH A, DI MARTINO A, et al. Attention-deficit/hyperactivity disorder without comorbidity is associated with distinct atypical patterns of cerebral microstructural development[J]. Hum Brain Mapp, 2014, 35(5): 2148-2162. DOI: 10.1002/hbm.22317.
[12]
KABUKCU BASAY B, BUBER A, BASAY O, et al. White matter alterations related to attention-deficit hyperactivity disorder and COMT val(158)met polymorphism: children with valine homozygote attention-deficit hyperactivity disorder have altered white matter connectivity in the right cingulum (cingulate gyrus)[J]. Neuropsychiatr Dis Treat, 2016, 12: 969-981. DOI: 10.2147/NDT.S104450.
[13]
ZHANG X X, ZHAO X, SHEN Y Y, Diffusion kurtosis imaging reveals microstructural abnormalities in cerebral white matter fiber tracts in children with global developmental delay[J]. Chin J Magn Reson Imaging, 2024, 15(6): 19-23, 30. DOI: 10.12015/issn.1674-8034.2024.06.002.
[14]
XIE Q F, LIU Y W, XIE Y Y. Application of the SNAP-Ⅳ and the Integrated Visual and Auditory Continuous Performance Test in evaluating attention deficit hyperactivity disorder[J]. Chin J Appl Clin Pediatr, 2022, 37(2): 121-125. DOI: 10.3760/cma.j.cn101070-20200923-01548.
[15]
DHIMAN S, HICKEY R E, THORN K E, et al. PyDesigner v1.0: A Pythonic Implementation of the DESIGNER Pipeline for Diffusion Magnetic Resonance Imaging[J/OL]. J Vis Exp, 2024, (207): e123456 [2024-12-11]. https://www.jove.com/v/123456/pydesigner-v1-0-a-pythonic-implementation-of-the-designer-pipeline. DOI: 10.1101/2021.10.20.465189.
[16]
LEI D, QIN K, LI W, et al. Regional microstructural differences in ADHD youth with and without a family history of bipolar I disorder[J]. J Affect Disord, 2023, 334: 238-245. DOI: 10.1016/j.jad.2023.04.125.
[17]
VANDERMOSTEN M, BOETS B, WOUTERS J, et al. Corrigendum to "A qualitative and quantitative review of diffusion tensor imaging studies in reading and dyslexia"[J/OL]. Neurosci Biobehav Rev, 2019, 98: 334 [2024-12-11]. https://doi.org/10.1016/j.neubiorev.2018.12.019. DOI: 10.1016/j.neubiorev.2018.12.019.
[18]
UDDIN M N, SINGH M V, FAIYAZ A, et al. Tensor-valued diffusion MRI detects brain microstructural abnormalities in HIV infected individuals with cognitive impairment[J/OL]. Sci Rep, 2024, 14(1): 28839 [2024-12-11]. https://doi.org/10.1038/s41598-024-80372-8. DOI: 10.1038/s41598-024-80372-8.
[19]
PARLATINI V, ITAHASHI T, LEE Y, et al. White matter alterations in Attention-Deficit/Hyperactivity Disorder (ADHD): a systematic review of 129 diffusion imaging studies with meta-analysis[J]. Mol Psychiatry, 2023, 28(10): 4098-4123. DOI: 10.1038/s41380-023-02173-1.
[20]
CUI J, WANG Z, XU Y, et al. Altered White Matter Integrity in ADHD Revealed by Meta-analysis of Tract-based Spatial Statistics[J]. J Atten Disord, 2023, 27(9): 997-1008. DOI: 10.1177/10870547231167499.
[21]
ROMER A L, PIZZAGALLI D A. Associations between Brain Structural Alterations, Executive Dysfunction, and General Psychopathology in a Healthy and Cross-Diagnostic Adult Patient Sample[J]. Biol Psychiatry Glob Open Sci, 2022, 2(1): 17-27. DOI: 10.1016/j.bpsgos.2021.06.002.
[22]
NIKOLAIDIS A, HE X, PEKAR J, et al. Frontal corticostriatal functional connectivity reveals task positive and negative network dysregulation in relation to ADHD, sex, and inhibitory control[J/OL]. Dev Cogn Neurosci, 2022, 54: 101101 [2024-12-11]. https://doi.org/10.1016/j.dcn.2022.101101. DOI: 10.1016/j.dcn.2022.101101.
[23]
SABAROEDIN K, RAZI A, CHOPRA S, et al. Frontostriatothalamic effective connectivity and dopaminergic function in the psychosis continuum[J]. Brain, 2023, 146(1): 372-386. DOI: 10.1093/brain/awac018.
[24]
COLLOMB-CLERC A, GUEGUEN M C M, MINOTTI L, et al. Human thalamic low-frequency oscillations correlate with expected value and outcomes during reinforcement learning[J/OL]. Nat Commun, 2023, 14(1): 6534 [2024-12-11]. https://doi.org/10.1038/s41467-023-42380-6. DOI: 10.1038/s41467-023-42380-6.
[25]
WANG Y, LUO J, MA L, et al. Learning to read Chinese promotes two cortico-subcortical pathways: The development of thalamo-occipital and fronto-striatal circuits[J/OL]. Front Neurosci, 2022, 16: 983084 [2024-12-11]. https://doi.org/10.3389/fnins.2022.983084. DOI: 10.3389/fnins.2022.983084.
[26]
JONES S A, NAGEL B J, NIGG J T, et al. Attention-deficit/hyperactivity disorder and white matter microstructure: the importance of dimensional analyses and sex differences[J/OL]. JCPP Adv, 2022, 2(4): e12109 [2024-12-11]. https://pubmed.ncbi.nlm.nih.gov/36817187/. DOI: 10.1002/jcv2.12109.
[27]
BESSETTE K L, STEVENS M C. Neurocognitive Pathways in Attention-Deficit/Hyperactivity Disorder and White Matter Microstructure[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2019, 4(3): 233-242. DOI: 10.1016/j.bpsc.2018.09.007.
[28]
ZHOU R, DONG P, CHEN S, et al. The long-range white matter microstructural alterations in drug-naive children with ADHD: A tract-based spatial statistics study[J/OL]. Psychiatry Res Neuroimaging, 2022, 327: 111548 [2024-12-11]. https://doi.org/10.1016/j.pscychresns.2022.111548. DOI: 10.1016/j.pscychresns.2022.111548.
[29]
GIUDICE C, ROGERS E E, JOHNSON B C, et al. Neuroanatomical correlates of sensory deficits in children with neonatal arterial ischemic stroke[J]. Dev Med Child Neurol, 2019, 61(6): 667-671. DOI: 10.1111/dmcn.14101.
[30]
KIM N Y, KASTNER S. A biased competition theory for the developmental cognitive neuroscience of visuo-spatial attention[J]. Curr Opin Psychol, 2019, 29: 219-228. DOI: 10.1016/j.copsyc.2019.03.017.
[31]
TOSONI A, CAPOTOSTO P, BALDASSARRE A, et al. Neuroimaging evidence supporting a dual-network architecture for the control of visuospatial attention in the human brain: a mini review[J/OL]. Front Hum Neurosci, 2023, 17: 1250096 [2024-12-11]. https://doi.org/10.3389/fnhum.2023.1250096. DOI: 10.3389/fnhum.2023.1250096.
[32]
VILLALÓN-REINA J E, MARTÍNEZ K, QU X, et al. Altered white matter microstructure in 22q11.2 deletion syndrome: a multisite diffusion tensor imaging study[J]. Mol Psychiatry, 2020, 25(11): 2818-2831. DOI: 10.1038/s41380-021-01153-7.
[33]
PASTURA G, DOERING T, GASPARETTO E L, et al. Exploratory analysis of diffusion tensor imaging in children with attention deficit hyperactivity disorder: evidence of abnormal white matter structure[J]. Atten Defic Hyperact Disord, 2016, 8(2): 65-71. DOI: 10.1007/s12402-015-0185-y.
[34]
ALBAJARA SáENZ A, VILLEMONTEIX T, SLAMA H, et al. Relationship Between White Matter Abnormalities and Neuropsychological Measures in Children With ADHD[J]. J Atten Disord, 2020, 24(7): 1020-1031. DOI: 10.1177/1087054718787878.
[35]
ÜNSEL-BOLAT G, BAYTUNCA M B, KARDAŞ B, et al. Diffusion tensor imaging findings in children with sluggish cognitive tempo comorbid Attention Deficit Hyperactivity Disorder[J]. Nord J Psychiatry, 2020, 74(8): 620-626. DOI: 10.1080/08039488.2020.1772364.
[36]
WU Z M, WANG P, YANG L, et al. Altered brain white matter microstructural asymmetry in children with ADHD[J/OL]. Psychiatry Res, 2020, 285: 112817 [2024-12-11]. https://doi.org/10.1016/j.psychres.2020.112817. DOI: 10.1016/j.psychres.2020.112817.
[37]
STRAUB K T, HUA J P Y, KARCHER N R, et al. Psychosis risk is associated with decreased white matter integrity in limbic network corticostriatal tracts[J/OL]. Psychiatry Res Neuroimaging, 2020, 301: 111089 [2024-12-11]. https://doi.org/10.1016/j.pscychresns.2020.111089. DOI: 10.1016/j.pscychresns.2020.111089.
[38]
SHIN J, ROWLEY J, CHOWDHURY R, et al. Inferior Longitudinal Fasciculus' Role in Visual Processing and Language Comprehension: A Combined MEG-DTI Study[J/OL]. Front Neurosci, 2019, 13: 875 [2024-12-11]. https://doi.org/10.3389/fnins.2019.00875. DOI: 10.3389/fnins.2019.00875.
[39]
GONZALEZ ALAM T R J, CRUZ ARIAS J, JEFFERIES E, et al. Ventral and dorsal aspects of the inferior frontal-occipital fasciculus support verbal semantic access and visually-guided behavioural control[J]. Brain Struct Funct, 2024, 229(1): 207-221. DOI: 10.1007/s00429-023-02729-5.
[40]
VERSACE A, JONES N P, JOSEPH H M, et al. White matter abnormalities associated with ADHD outcomes in adulthood[J]. Mol Psychiatry, 2021, 26(11): 6655-6665. DOI: 10.1038/s41380-021-01153-7.
[41]
TANG S, LIU X, NIE L, et al. Diffusion kurtosis imaging reveals abnormal gray matter and white matter development in some brain regions of children with attention-deficit/hyperactivity disorder[J/OL]. J Neurosci Res, 2024, 102(1): e25284 [2024-12-11]. https://pubmed.ncbi.nlm.nih.gov/38284864/. DOI: 10.1002/jnr.25284.
[42]
HELPERN J A, ADISETIYO V, FALANGOLA M F, et al. Preliminary evidence of altered gray and white matter microstructural development in the frontal lobe of adolescents with attention-deficit hyperactivity disorder: a diffusional kurtosis imaging study[J]. J Magn Reson Imaging, 2011, 33(1): 17-23. DOI: 10.1002/jmri.22397.
[43]
HU R, TAN F, CHEN W, et al. Microstructure abnormalities of the diffusion quantities in children with attention-deficit/hyperactivity disorder: an AFQ and TBSS study[J/OL]. Front Psychiatry, 2023, 14: 1237113 [2024-12-11]. https://doi.org/10.3389/fpsyt.2023.1237113. DOI: 10.3389/fpsyt.2023.1237113.
[44]
LANZAFAME S, GIANNELLI M, GARACI F, et al. Differences in Gaussian diffusion tensor imaging and non-Gaussian diffusion kurtosis imaging model-based estimates of diffusion tensor invariants in the human brain[J/OL]. Med Phys, 2016, 43(5): 2464 [2024-12-11]. https://doi.org/10.1118/1.4946819. DOI: 10.1118/1.4946819.
[45]
LIN Q, BU X, WANG M, et al. Aberrant white matter properties of the callosal tracts implicated in girls with attention-deficit/hyperactivity disorder[J]. Brain Imaging Behav, 2020, 14(3): 728-735. DOI: 10.1007/s11682-018-0010-2.

PREV Assessment of attention deficit symptoms in ADHD based on T1W-MRI radiomics brain network
NEXT Effects of aerobic exercise on parents who lost their only child: A multimodal magnetic resonance imaging and mediation analysis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn