Share:
Share this content in WeChat
X
Clinical Article
Study on the correlation between brain structure-function coupling and cognitive function in end-stage renal disease patients using multimodal magnetic resonance imaging
ZHOU Yu  WANG Haibao  QI Xiangming  LI Dashan  FANG Jie  ZOU Fan  WANG Hailong  GUO Lingling 

Cite this article as: ZHOU Y, WANG H B, QI X M, et al. Study on the correlation between brain structure-function coupling and cognitive function in end-stage renal disease patients using multimodal magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2025, 16(5): 74-79. DOI:10.12015/issn.1674-8034.2025.05.012.


[Abstract] Objective For the first time, this study combines the fractional amplitude of low-frequency fluctuation (fALFF) method with voxel-based morphometry (VBM) technique to systematically investigate the brain structural-functional coupling characteristics in end-stage renal disease (ESRD) patients and their associative mechanisms with cognitive dysfunction.Materials and Methods Prospectively, 57 ESRD patients and 45 healthy control were recruited. Both groups underwent cranial 3D-T1 structural imaging, resting-state functional magnetic resonance imaging (rs-fMRI) scanning, and cognitive function assessment tests [including Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Trail Making Test A (TMT-A)]. The fALFF maps and gray matter volume (GMV) maps of the two groups were obtained. By calculating the ratio of fALFF to GMV for each voxel, the structure-function coupling (fALFF/GMV) maps were generated. The differences between the two groups were compared, and a Pearson correlation analysis was conducted between the fALFF/GMV values of the brain regions with significant differences and the cognitive scores.Results Compared with the healthy control group, in ESRD patients, the fALFF/GMV values increased in the bilateral hippocampi, putamina, middle temporal gyri, cerebellar Cere8 regions, as well as the right amygdala, olfactory cortex, parahippocampal gyrus, left lenticular pallidum, fusiform gyrus, and cerebellar Cere7b region. The fALFF/GMV values decreased in the bilateral medial superior frontal gyri and inferior parietal lobules (P < 0.001, corrected by FDR). There was a significant negative correlation between the total score of the MMSE and the fALFF/GMV values in the left putamen and left lenticular pallidum. A significant negative correlation was observed between the total score of MoCA and the fALFF/GMV values in the left putamina. There was a significant positive correlation between the TMT-A and the fALFF/GMV values in the bilateral medial superior frontal gyri (P < 0.05, corrected by FDR).Conclusions ESRD patients exhibit a significant phenomenon of structural-functional decoupling in multiple relevant brain regions within the default network and the executive control network, which is closely associated with the degree of cognitive impairment in these patients.
[Keywords] end-stage renal disease;structural-functional coupling;cognitive impairment;magnetic resonance imaging;multimodal magnetic resonance imaging;voxel-based morphometry;resting-state functional magnetic resonance imaging

ZHOU Yu1   WANG Haibao1*   QI Xiangming2   LI Dashan2   FANG Jie1   ZOU Fan1   WANG Hailong1   GUO Lingling1  

1 Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China

2 Department of Nephrology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China

Corresponding author: WANG H B, E-mail: wanghaibao916@163.com

Conflicts of interest   None.

Received  2025-02-21
Accepted  2025-04-10
DOI: 10.12015/issn.1674-8034.2025.05.012
Cite this article as: ZHOU Y, WANG H B, QI X M, et al. Study on the correlation between brain structure-function coupling and cognitive function in end-stage renal disease patients using multimodal magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2025, 16(5): 74-79. DOI:10.12015/issn.1674-8034.2025.05.012.

[1]
BALUARTE J H. Neurological Complications of Renal Disease[J]. Semin Pediatr Neurol, 2017, 24(1): 25-32. DOI: 10.1016/j.spen.2016.12.004.
[2]
OLCZYK P, KUSZTAL M, GOŁĘBIOWSKI T, et al. Cognitive Impairment in End Stage Renal Disease Patients Undergoing Hemodialysis: Markers and Risk Factors[J/OL]. Int J Environ Res Public Health, 2022, 19(4): 2389 [2025-02-20]. https://doi.org/10.3390/ijerph19042389. DOI: 10.3390/ijerph19042389.
[3]
PARIBELLO G, PAPA F, GANZERLI MARIA C, et al. Cognitive Impairment in Renal Replacement Therapy: Comparison between Methods[J]. J Clin Nephrol, 2024, 8: 1-7. DOI: 10.29328/journal.jcn.1001119.
[4]
YUAN H, LUO Z, GU W, et al. Abnormal grey matter structural changes in patients with end-stage kidney disease and mild cognitive impairment: correlations with clinical features[J]. Metab Brain Dis, 2023, 38(8): 2817-2829. DOI: 10.1007/s11011-023-01293-5.
[5]
QI Y, SONG L, LIU X, et al. Cerebral white matter injury in haemodialysis patients: a cross-sectional tract-based spatial statistics and fixel-based analysis[J/OL]. Clin Kidney J, 2024, 17(10): sfae286 [2025-02-20]. https://doi.org/10.1093/ckj/sfae286. DOI: 10.1093/ckj/sfae286.
[6]
CHOI B, HEO C M, YI J, et al. Effect of Dialysis on Structural Brain Connectivity in Patients with End-Stage Renal Disease[J]. Blood Purif, 2025, 54(1): 28-36. DOI: 10.1159/000541239.
[7]
WANG C, SONG L, LIU X, et al. Brain surface area and function alterations are correlated with cognition in patients with end-stage renal disease[J]. Quant Imaging Med Surg, 2025, 15(1): 217-229. DOI: 10.21037/qims-24-1265.
[8]
LI R, LIU M, XIA B, et al. Altered spontaneous brain activity in patients with progressive-stage and end-stage chronic kidney disease: insights from dALFF analysis[J/OL]. Metab Brain Dis, 2024, 40(1): 55 [2025-02-20]. https://pubmed.ncbi.nlm.nih.gov/39641814/. DOI: 10.1007/s11011-024-01488-4.
[9]
SONG W, ZHAO L, LI X, et al. Altered brain activity in patients with end-stage renal disease: A meta-analysis of resting-state functional imaging[J/OL]. Brain Behav, 2023, 13(7): e3057 [2025-02-20]. https://doi.org/10.1002/brb3.3057. DOI: 10.1002/brb3.3057.
[10]
CHEN H J, ZHANG L J, LU G M. Multimodality MRI Findings in Patients with End-Stage Renal Disease[J/OL]. Biomed Res Int, 2015, 2015: 697402 [2025-02-20]. https://doi.org/10.1155/2015/697402. DOI: 10.1155/2015/697402.
[11]
ZHAO R, WANG P, LIU L, et al. Whole-brain structure-function coupling abnormalities in mild cognitive impairment: a study combining amplitude of low-frequency fluctuations and voxel-based morphometry[J/OL]. Front Neurosci, 2023, 17: 1236221 [2025-02-20]. https://doi.org/10.3389/fnins.2023.1236221. DOI: 10.3389/fnins.2023.1236221.
[12]
ZHANG X, LIANG C, WANG N, et al. Abnormal whole-brain voxelwise structure-function coupling and its association with cognitive dysfunction in patients with different cerebral small vessel disease burdens[J/OL]. Front Aging Neurosci, 2023, 15: 1148738 [2025-02-20]. https://doi.org/10.3389/fnagi.2023.1148738. DOI: 10.3389/fnagi.2023.1148738.
[13]
ZHENG J H, HAN Y, YANG Q L, et al. MRI study on brain structural and functional changes in maintenance hemodialysis patients with end-stage renal disease[J]. Chin J Med Comput Imaging, 2022, 28(1): 8-12. DOI: 10.19627/j.cnki.cn31-1700/th.2022.01.022.
[14]
SANZ-MORALES E, MELERO H. Advances in the fMRI analysis of the default mode network: a review[J/OL]. Brain Struct Funct, 2024, 230(1): 22 [2025-02-20]. https://pubmed.ncbi.nlm.nih.gov/39738718/. DOI: 10.1007/s00429-024-02888-z.
[15]
MENON V. 20 years of the default mode network: A review and synthesis[J]. Neuron, 2023, 111(16): 2469-2487. DOI: 10.1016/j.neuron.2023.04.023.
[16]
CHEN H J, QI R, KONG X, et al. The impact of hemodialysis on cognitive dysfunction in patients with end-stage renal disease: a resting-state functional MRI study[J]. Metab Brain Dis, 2015, 30(5): 1247-1256. DOI: 10.1007/s11011-015-9702-0.
[17]
LI X, YAN R, YUE Z, et al. Abnormal Dynamic Functional Connectivity in Patients With End-Stage Renal Disease[J/OL]. Front Neurosci, 2022, 16: 852822 [2025-02-20]. https://doi.org/10.3389/fnins.2022.852822. DOI: 10.3389/fnins.2022.852822.
[18]
ZHENG J, SUN Q, WU X, et al. Brain Micro-Structural and Functional Alterations for Cognitive Function Prediction in the End-Stage Renal Disease Patients Undergoing Maintenance Hemodialysis[J]. Acad Radiol, 2023, 30(6): 1047-1055. DOI: 10.1016/j.acra.2022.06.019.
[19]
ZHANG Z, WEI W, WANG S, et al. Dynamic structure–function coupling across three major psychiatric disorders[J]. Psychol Med, 2024, 54(8): 1629-1640. DOI: 10.1017/S0033291723003525.
[20]
FOTIADIS P, PARKES L, DAVIS K A, et al. Structure-function coupling in macroscale human brain networks[J]. Nat Rev Neurosci, 2024, 25(10): 688-704. DOI: 10.1038/s41583-024-00846-6.
[21]
YIN X, YANG W, SONG L, et al. Abnormal neurovascular coupling exists in patients with peritoneal dialysis and hemodialysis: evidence from a multi-mode MRI study[J/OL]. Clin Kidney J, 2024, 18(1): sfae353 [2025-02-20]. https://doi.org/10.1093/ckj/sfae353. DOI: 10.1093/ckj/sfae353.
[22]
KAMALI A, MILOSAVLJEVIC S, GANDHI A, et al. The Cortico-Limbo-Thalamo-Cortical Circuits: An Update to the Original Papez Circuit of the Human Limbic System[J]. Brain Topogr, 2023, 36(3): 371-389. DOI: 10.1007/s10548-023-00955-y.
[23]
AUER H, CABALO D G, RODRÍGUEZ-CRUCES R, et al. From histology to macroscale function in the human amygdala[J/OL]. eLife, 2025, 13: RP101950 [2025-02-20]. https://doi.org/10.7554/eLife.101950. DOI: 10.7554/eLife.101950.
[24]
CHANDRA S, SHARMA S, CHAUDHURI R, et al. Episodic and associative memory from spatial scaffolds in the hippocampus[J]. Nature, 2025, 638(8051): 739-751. DOI: 10.1038/s41586-024-08392-y.
[25]
HOROVITZ D J, ASKINS L A, REGNIER G M, et al. Age-related synaptic signatures of brain and cognitive reserve in the rat hippocampus and parahippocampal regions[J]. Neurobiol Aging, 2025, 148: 80-97. DOI: 10.1016/j.neurobiolaging.2025.01.010.
[26]
CHEN H J, QIU J, FU Q, et al. Alterations of Spontaneous Brain Activity in Hemodialysis Patients[J/OL]. Front Hum Neurosci, 2020, 14: 278 [2025-02-20]. https://doi.org/10.3389/fnhum.2020.00278. DOI: 10.3389/fnhum.2020.00278.
[27]
CHEN P, HU R, GAO L, et al. Abnormal degree centrality in end-stage renal disease (ESRD) patients with cognitive impairment: a resting-state functional MRI study[J]. Brain Imaging Behav, 2021, 15(3): 1170-1180. DOI: 10.1007/s11682-020-00317-3.
[28]
SIMONYAN K. Recent advances in understanding the role of the basal ganglia[J/OL]. F1000Res, 2019, 8: F1000 Faculty Rev-122 [2025-02-20]. https://doi.org/10.12688/f1000research.16524.1. DOI: 10.12688/f1000research.16524.1.
[29]
SILVERI M C. Contribution of the Cerebellum and the Basal Ganglia to Language Production: Speech, Word Fluency, and Sentence Construction-Evidence from Pathology[J]. Cerebellum, 2021, 20(2): 282-294. DOI: 10.1007/s12311-020-01207-6.
[30]
ALGAHTANI H, ALGAHTANI O, SHIRAH B, et al. Uremic parkinsonism with bilateral basal ganglia lesions: a puzzling syndrome with good outcome[J]. Acta Neurol Belg, 2024, 124(5): 1709-1711. DOI: 10.1007/s13760-024-02475-3.
[31]
HAMED S, MOHAMED K, ELHAMEED S ABD, et al. Movement Disorders Due to Selective Basal Ganglia Lesions with Uremia[J]. Can J Neurol Sci, 2020, 47(3): 350-365. DOI: 10.1017/cjn.2020.29.
[32]
JIANG Y, LIU Y, GAO B, et al. Segmental Abnormalities of White Matter Microstructure in End-Stage Renal Disease Patients: An Automated Fiber Quantification Tractography Study[J/OL]. Front Neurosci, 2021, 15: 765677 [2025-02-20]. https://doi.org/10.3389/fnins.2021.765677. DOI: 10.3389/fnins.2021.765677.
[33]
JIN M, WANG L, WANG H, et al. Structural and Functional Alterations in Hemodialysis Patients: A Voxel-Based Morphometry and Functional Connectivity Study[J/OL]. Front Hum Neurosci, 2020, 14: 80 [2025-02-20]. https://doi.org/10.3389/fnhum.2020.00080. DOI: 10.3389/fnhum.2020.00080.
[34]
PRATI J M, PONTES-SILVA A, GIANLORENÇO A C L. The cerebellum and its connections to other brain structures involved in motor and non-motor functions: A comprehensive review[J/OL]. Behav Brain Res, 2024, 465: 114933 [2025-02-20]. https://doi.org/10.1016/j.bbr.2024.114933. DOI: 10.1016/j.bbr.2024.114933.
[35]
XIE Y Y, ZHANG X Y, ZHU J N. The cognitive functions of the cerebellum and its role in neurodegenerative diseases[J/OL]. Ageing Neurodegener Dis, 2024, 4(4): 18 [2025-02-20]. https://www.oaepublish.com/articles/and.2024.27. DOI: 10.20517/and.2024.27.
[36]
PETRIDES M. On the evolution of polysensory superior temporal sulcus and middle temporal gyrus: A key component of the semantic system in the human brain[J]. J Comp Neurol, 2023, 531(18): 1987-1995. DOI: 10.1002/cne.25521.
[37]
SNYDER K M, FORSETH K J, DONOS C, et al. Critical role of the ventral temporal lobe in naming[J]. Epilepsia, 2023, 64(5): 1200-1213. DOI: 10.1111/epi.17555.
[38]
FLORIS D L, LLERA A, ZABIHI M, et al. A multimodal neural signature of face processing in autism within the fusiform gyrus[J]. Nat Ment Health, 2025, 3(1): 31-45. DOI: 10.1038/s44220-024-00349-4.
[39]
BOONSTRA J T. The cerebellar connectome[J/OL]. Behav Brain Res, 2025, 482: 115457 [2025-02-20]. https://pubmed.ncbi.nlm.nih.gov/39884319/. DOI: 10.1016/j.bbr.2025.115457.
[40]
JOSEPHS K A, JOSEPHS K A, Jr. Prosopagnosia: face blindness and its association with neurological disorders[J/OL]. Brain Commun, 2024, 6(1): fcae002 [2025-02-20]. https://doi.org/10.1093/braincomms/fcae002. DOI: 10.1093/braincomms/fcae002.

PREV Effects of aerobic exercise on parents who lost their only child: A multimodal magnetic resonance imaging and mediation analysis
NEXT The value of hippocampal MRI-based radiomics modelling for predicting cognitive dysfunction in patients with type 2 diabetes mellitus
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn