Share:
Share this content in WeChat
X
Clinical Article
Association of MRI indexes of brain glymphatic function with sleep status in insomnia patients disorders and the effects of repetitive transcranial magnetic stimulation treatment on them
ZHANG Zhengnan  CHENG Shihan  WANG Huixiao  ZHOU Jinli  ZHU Yifei  GENG Zuojun  YANG Haiqing 

Cite this article as: ZHANG Z N, CHENG S H, WANG H X, et al. Association of MRI indexes of brain glymphatic function with sleep status in insomnia patients disorders and the effects of repetitive transcranial magnetic stimulation treatment on them[J]. Chin J Magn Reson Imaging, 2025, 16(5): 88-95. DOI:10.12015/issn.1674-8034.2025.05.014.


[Abstract] Objective To investigate the relationship between brain glymphatic function and sleep status in insomnia disorder (ID) patients, and to investigate whether repetitive transcranial magnetic stimulation (rTMS) can improve sleep status and brain glymphoid function in patients with ID.Materials and Methods Patients were divided into a real rTMS treatment group (n = 28), a sham rTMS treatment group (n = 9), and a healthy control group matched for age and gender (n = 20). All subjects underwent neuropsychological and sleep scale assessments, polysomnography (PSG), and MRI. Diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) was used to evaluate glymphatic function. Continuous variables were compared among three groups using one-way ANOVA or Kruskal-Wallis test, with post-hoc analysis conducted using Tukey or Dunn's multiple comparison test. Categorical variables were analyzed using the χ2 test. The intraclass correlation coefficient was used to assess the consistency of DTI-ALPS index measurements among different observers. Univariate and multivariate linear regression analyses were used to evaluate the correlations between DTI-ALPS and clinical data, sleep assessment scales, and PSG indicators. Paired sample t-tests were used to assess changes in sleep status and DTI-ALPS indices before and after treatment in the real/sham rTMS groups.Results The DTI-ALPS index was lower in all ID patients than in healthy controls before rTMS treatment (F = 13.08, P < 0.001). N2 sleep duration (β = 0.01, 95% CI: 0.01 to 0.01, P = 0.034; β = 0.01, 95% CI: 0.01 to 0.01, P = 0.034) and arousal index (β = -0.01, 95% CI: -0.02 to -0.01, P < 0.001; β = -0.01, 95% CI: -0.01 to -0.01, P = 0.002) were independently associated with the DTI-ALPS index in both the minimally adjusted model Ⅰ and the strictly adjusted model Ⅱ in all ID patients. After rTMS, the sleep questionnaire results, total sleep time, N2 sleep time, arousal index, and DTI-ALPS index in the true stimulation group compared to the sham stimulation group reflected that rTMS treatment improved sleep status as well as brain glymphatic function in ID patients.Conclusions N2 sleep time and arousal index were independently correlated with brain glymphatic function, and rTMS treatment could improve brain glymphatic function and sleep status of insomnia patients.
[Keywords] insomnia disorder;diffusion-tensor imaging;magnetic resonance imaging;brain glymphatic function;repetitive transcranial magnetic stimulation

ZHANG Zhengnan1   CHENG Shihan1   WANG Huixiao1   ZHOU Jinli1   ZHU Yifei2   GENG Zuojun1   YANG Haiqing1*  

1 Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China

2 Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China

Corresponding author: YANG H Q, E-mail: hbyhq@sina.com

Conflicts of interest   None.

Received  2024-12-14
Accepted  2025-05-10
DOI: 10.12015/issn.1674-8034.2025.05.014
Cite this article as: ZHANG Z N, CHENG S H, WANG H X, et al. Association of MRI indexes of brain glymphatic function with sleep status in insomnia patients disorders and the effects of repetitive transcranial magnetic stimulation treatment on them[J]. Chin J Magn Reson Imaging, 2025, 16(5): 88-95. DOI:10.12015/issn.1674-8034.2025.05.014.

[1]
SATEIA M J. International Classification of Sleep Disorders-Third Edition[J]. Chest, 2014, 146(5): 1387-1394. DOI: 10.1378/chest.14-0970.
[2]
PAUL A M, SALAS R E. Insomnia[J]. Prim Care, 2024, 51(2): 299-310. DOI: 10.1016/j.pop.2024.02.002.
[3]
NAHA S, SIVARAMAN M, SAHOTA P. Insomnia: A current review[J/OL]. Mo Med, 2024, 121(1): 44-51 [2024-11-27]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10887463/.
[4]
NGUYEN V, GEORGE T, BREWSTER G S. Insomnia in Older Adults[J]. Curr Geriatr Rep, 2019, 8(4): 271-290. DOI: 10.1007/s13670-019-00300-x.
[5]
SAN L, ARRANZ B. The night and day challenge of sleep disorders and insomnia: A narrative review[J/OL]. Actas Esp Psiquiatr, 2024, 52(1): 45-56 [2024-11-27]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10926017/.
[6]
MESTRE H, MORI Y, NEDERGAARD M. The Brain's Glymphatic System: Current Controversies[J]. Trends Neurosci, 2020, 43(7): 458-466. DOI: 10.1016/j.tins.2020.04.003.
[7]
XIE L, KANG H, XU Q, et al. Sleep Drives Metabolite Clearance from the Adult Brain[J]. Science, 2013, 342(6156): 373-377. DOI: 10.1126/science.1241224.
[8]
OLSSON M, ÄRLIG J, HEDNER J, et al. Sleep deprivation and cerebrospinal fluid biomarkers for Alzheimer's disease[J/OL]. Sleep, 2018, 41(5) [2024-11-27]. https://pubmed.ncbi.nlm.nih.gov/29425372/. DOI: 10.1093/sleep/zsy025.
[9]
KRUEGER J M, FRANK M G, WISOR J P, et al. Sleep function: Toward elucidating an enigma[J/OL]. Sleep Med Rev, 2016, 28: 46-54 [2024-12-05]. https://linkinghub.elsevier.com/retrieve/pii/S1087079215001033. DOI: 10.1016/j.smrv.2015.08.005.
[10]
ZHOU Y, CAI J, ZHANG W, et al. Impairment of the Glymphatic Pathway and Putative Meningeal Lymphatic Vessels in the Aging Human[J/OL]. Ann Neurol, 2020, 87(3): 357-369 [2025-02-17]. https://onlinelibrary.wiley.com/doi/10.1002/ana.25670. DOI: 10.1002/ana.25670.
[11]
MORTENSEN K N, SANGGAARD S, MESTRE H, et al. Impaired Glymphatic Transport in Spontaneously Hypertensive Rats[J]. J Neurosci, 2019, 39(32): 6365-6377. DOI: 10.1523/JNEUROSCI.1974-18.2019.
[12]
TAOKA T, MASUTANI Y, KAWAI H, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases[J/OL]. Jpn J Radiol, 2017, 35(4): 172-178 [2024-01-13]. http://link.springer.com/10.1007/s11604-017-0617-z. DOI: 10.1007/s11604-017-0617-z.
[13]
ANDICA C, KAMAGATA K, TAKABAYASHI K, et al. Neuroimaging findings related to glymphatic system alterations in older adults with metabolic syndrome[J/OL]. Neurobiol Dis, 2023, 177: 105990 [2024-12-11]. https://linkinghub.elsevier.com/retrieve/pii/S0969996123000049. DOI: 10.1016/j.nbd.2023.105990.
[14]
KAMAGATA K, ANDICA C, TAKABAYASHI K, et al. Association of MRI Indices of Glymphatic System With Amyloid Deposition and Cognition in Mild Cognitive Impairment and Alzheimer Disease[J/OL]. Neurology, 2022, 99(24): e2648-e2660 [2024-12-10]. https://www.neurology.org/doi/10.1212/WNL.0000000000201300. DOI: 10.1212/WNL.0000000000201300.
[15]
MA J, CHEN M, LIU G-H, et al. Effects of sleep on the glymphatic functioning and multimodal human brain network affecting memory in older adults[J/OL]. Mol Psychiatry, 2024: 1-13 [2024-12-11]. https://www.nature.com/articles/s41380-024-02778-0. DOI: 10.1038/s41380-024-02778-0.
[16]
SIOW T Y, TOH C H, HSU J-L, et al. Association of Sleep, Neuropsychological Performance, and Gray Matter Volume With Glymphatic Function in Community-Dwelling Older Adults[J/OL]. Neurology, 2022, 98(8): e829-e838 [2024-12-07]. https://www.neurology.org/doi/10.1212/WNL.0000000000013215. DOI: 10.1212/WNL.0000000000013215.
[17]
JIN Y, ZHANG W, YU M, et al. Glymphatic system dysfunction in middle-aged and elderly chronic insomnia patients with cognitive impairment evidenced by diffusion tensor imaging along the perivascular space (DTI-ALPS)[J/OL]. Sleep Med, 2024, 115: 145-151 [2024-12-11]. https://linkinghub.elsevier.com/retrieve/pii/S1389945724000285. DOI: 10.1016/j.sleep.2024.01.028.
[18]
XIONG Z, BAI M, WANG Z, et al. Resting-state fMRI network efficiency as a mediator in the relationship between the glymphatic system and cognitive function in obstructive sleep apnea hypopnea syndrome: Insights from a DTI-ALPS investigation[J/OL]. Sleep Med, 2024, 119: 250-257 [2024-12-11]. https://linkinghub.elsevier.com/retrieve/pii/S1389945724002247. DOI: 10.1016/j.sleep.2024.05.009.
[19]
BAE Y J, KIM J-M, CHOI B S, et al. Altered Brain Glymphatic Flow at Diffusion-Tensor MRI in Rapid Eye Movement Sleep Behavior Disorder[J/OL]. Radiology, 2023, 307(5): e221848 [2024-12-11]. http://pubs.rsna.org/doi/10.1148/radiol.221848. DOI: 10.1148/radiol.221848.
[20]
LIN S, LIN X, CHEN S, et al. Association of MRI Indexes of the Perivascular Space Network and Cognitive Impairment in Patients with Obstructive Sleep Apnea[J/OL]. Radiology, 2024, 311(3) [2024-12-11]. https://pubmed.ncbi.nlm.nih.gov/38888481/. DOI: 10.1148/radiol.232274.
[21]
TAOKA T, FUKUSUMI A, MIYASAKA T, et al. Structure of the Medullary Veins of the Cerebral Hemisphere and Related Disorders[J]. RadioGraphics, 2017, 37(1): 281-297. DOI: 10.1148/rg.2017160061.
[22]
VALERO-CABRÉ A, AMENGUAL J L, STENGEL C, et al. Transcranial magnetic stimulation in basic and clinical neuroscience: A comprehensive review of fundamental principles and novel insights[J/OL]. Neurosci Amp Biobehav Rev, 2017, 83: 381-404 [2025-01-08]. https://www.sciencedirect.com/science/article/pii/S0149763417304840. DOI: 10.1016/j.neubiorev.2017.10.006.
[23]
WALKER M P, STICKGOLD R. Sleep-Dependent Learning and Memory Consolidation[J]. Neuron, 2004, 44(1): 121-133. DOI: 10.1016/j.neuron.2004.08.031.
[24]
QI S, ZHANG Y, LI X, et al. Improved Functional Organization in Patients With Primary Insomnia After Individually-Targeted Transcranial Magnetic Stimulation[J/OL]. Front Neurosci, 2022, 16: 859440 [2024-12-11]. https://www.frontiersin.org/articles/10.3389/fnins.2022.859440/full. DOI: 10.3389/fnins.2022.859440.
[25]
ZHANG H, HUANG X, WANG C, et al. Alteration of gamma-aminobutyric acid in the left dorsolateral prefrontal cortex of individuals with chronic insomnia: a combined transcranial magnetic stimulation-magnetic resonance spectroscopy study[J/OL]. Sleep Med, 2022, 92: 34-40 [2024-12-03]. https://linkinghub.elsevier.com/retrieve/pii/S1389945722000752. DOI: 10.1016/j.sleep.2022.03.003.
[26]
LI M, ZHU Y, ZHANG X, et al. 1Hz rTMS over left DLPFC rewired the coordination with hippocampus in insomnia patients: A pilot study[J]. Brain Stimulat, 2022, 15(2): 437-440. DOI: 10.1016/j.brs.2022.02.011.
[27]
SHI X, GUO Y, ZHU L, et al. Electroencephalographic connectivity predicts clinical response to repetitive transcranial magnetic stimulation in patients with insomnia disorder[J/OL]. Sleep Med, 2021, 88: 171-179 [2024-12-11]. https://linkinghub.elsevier.com/retrieve/pii/S1389945721005220. DOI: 10.1016/j.sleep.2021.10.017.
[28]
WU H, LV J, LIU M, et al. The long-term effect of repetitive transcranial magnetic stimulation in the treatment of intractable insomnia[J/OL]. Sleep Med, 2021, 85: 309-312 [2024-12-09]. https://linkinghub.elsevier.com/retrieve/pii/S1389945721004007. DOI: 10.1016/j.sleep.2021.07.018.
[29]
ZHANG Y, LIAO W, XIA W. Effect of Acupuncture Cooperated with Low-frequency Repetitive Transcranial Magnetic Stimulation on Chronic Insomnia: A Randomized Clinical Trial[J]. Curr Med Sci, 2018, 38(3): 491-498. DOI: 10.1007/s11596-018-1905-2.
[30]
JIANG B, HE D, GUO Z, et al. Efficacy and placebo response of repetitive transcranial magnetic stimulation for primary insomnia[J/OL]. Sleep Med, 2019, 63: 9-13 [2025-04-08]. https://www.sciencedirect.com/science/article/pii/S1389945719301467. DOI: 10.1016/j.sleep.2019.05.008.
[31]
AMERICAN PSYCHIATRIC ASSOCIATION. Diagnostic and statistical manual of mental disorders[M/OL]. Fifth Edition edition. American Psychiatric Association, 2013 [2024-12-13]. https://psychiatryonline.org/doi/book/10.1176/appi.books.9780890425596. DOI: 10.1176/appi.books.9780890425596.
[32]
LANZA G, FISICARO F, CANTONE M, et al. Repetitive transcranial magnetic stimulation in primary sleep disorders[J/OL]. Sleep Med Rev, 2023, 67: 101735 [2024-12-11]. https://linkinghub.elsevier.com/retrieve/pii/S1087079222001484. DOI: 10.1016/j.smrv.2022.101735.
[33]
ZHANG W, ZHOU Y, WANG J, et al. Glymphatic clearance function in patients with cerebral small vessel disease[J/OL]. Neuroimage, 2021, 238: 118257 [2024-11-27]. https://linkinghub.elsevier.com/retrieve/pii/S1053811921005346. DOI: 10.1016/j.neuroimage.2021.118257.
[34]
CHONG P L H, GARIC D, SHEN M D, et al. Sleep, cerebrospinal fluid, and the glymphatic system: A systematic review[J/OL]. Sleep Med Rev, 2022, 61: 101572 [2024-11-27]. https://linkinghub.elsevier.com/retrieve/pii/S108707922100157X. DOI: 10.1016/j.smrv.2021.101572.
[35]
SANGALLI L, BOGGERO I A. The impact of sleep components, quality and patterns on glymphatic system functioning in healthy adults: A systematic review[J/OL]. Sleep Med, 2023, 101: 322-349 [2024-12-12]. https://linkinghub.elsevier.com/retrieve/pii/S1389945722012205. DOI: 10.1016/j.sleep.2022.11.012.
[36]
FULTZ N E, BONMASSAR G, SETSOMPOP K, et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep[J/OL]. Science, 2019, 366(6465): 628-631 [2025-04-09]. https://pubmed.ncbi.nlm.nih.gov/31672896/. DOI: 10.1126/science.aax5440.
[37]
OHAYON M M, CARSKADON M A, GUILLEMINAULT C, et al. Meta-Analysis of Quantitative Sleep Parameters From Childhood to Old Age in Healthy Individuals: Developing Normative Sleep Values Across the Human Lifespan[J]. Sleep, 2004, 27(7): 1255-1273. DOI: 10.1093/sleep/27.7.1255.
[38]
BOULOS M I, JAIRAM T, KENDZERSKA T, et al. Normal polysomnography parameters in healthy adults: a systematic review and meta-analysis[J]. Lancet Respir Med, 2019, 7(6): 533-543. DOI: 10.1016/S2213-2600(19)30057-8.
[39]
YAN T, QIU Y, YU X, et al. Glymphatic Dysfunction: A Bridge Between Sleep Disturbance and Mood Disorders[J/OL]. Front Psychiatry, 2021, 12: 658340 [2024-11-27]. https://www.frontiersin.org/articles/10.3389/fpsyt.2021.658340/full. DOI: 10.3389/fpsyt.2021.658340.
[40]
HOLTH J K, FRITSCHI S K, WANG C, et al. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans[J]. Science, 2019, 363(6429): 880-884. DOI: 10.1126/science.aav2546.
[41]
HE R H, FAN J Z, QIAN F F, et al. Repetitive transcranial magnetic stimulation promotes neurological functional recovery in rats with traumatic brain injury by upregulating synaptic plasticity-related proteins[J/OL]. Neural Regen Res, 2023, 18(2): 368 [2025-04-09]. https://pubmed.ncbi.nlm.nih.gov/35900432/. DOI: 10.4103/1673-5374.346548.
[42]
IGLESIAS A H. Transcranial Magnetic Stimulation as Treatment in Multiple Neurologic Conditions[J/OL]. Curr Neurol Neurosci Rep, 2020, 20(1) [2025-04-09]. https://pubmed.ncbi.nlm.nih.gov/32020300/. DOI: 10.1007/s11910-020-1021-0.
[43]
BONNET M H, ARAND D L. Hyperarousal and insomnia: State of the science[J]. Sleep Med Rev, 2010, 14(1): 9-15. DOI: 10.1016/j.smrv.2009.05.002.
[44]
VAN DER WERF Y D, ALTENA E, VAN DIJK K D, et al. Is Disturbed Intracortical Excitability a Stable Trait of Chronic Insomnia? A Study Using Transcranial Magnetic Stimulation Before and After Multimodal Sleep Therapy[J]. Biol Psychiatry, 2010, 68(10): 950-955. DOI: 10.1016/j.biopsych.2010.06.028.
[45]
POH E Z, HAHNE D, MORETTI J, et al. Simultaneous quantification of dopamine, serotonin, their metabolites and amino acids by LC-MS/MS in mouse brain following repetitive transcranial magnetic stimulation[J/OL]. Neurochem Int, 2019, 131: 104546 [2025-04-09]. https://pubmed.ncbi.nlm.nih.gov/31518601/. DOI: 10.1016/j.neuint.2019.104546.
[46]
KRONE L B, FEHÉR K D, RIVERO T, et al. Brain stimulation techniques as novel treatment options for insomnia: A systematic review[J/OL]. J Sleep Res, 2023, 32(6): e13927 [2024-11-27]. https://onlinelibrary.wiley.com/doi/10.1111/jsr.13927. DOI: 10.1111/jsr.13927.

PREV The value of hippocampal MRI-based radiomics modelling for predicting cognitive dysfunction in patients with type 2 diabetes mellitus
NEXT Research on brain changes in social isolation based on magnetic resonance imaging technology: A Meta-analysis based on activation likelihood estimation
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn