Share:
Share this content in WeChat
X
Clinical Article
Study on rs-fMRI imaging features of depression patients with unilateral basal ganglia stroke based on local consistencyand low-frequency amplitude
XU Tianjiao  LU Mengxin  LI Yuanyuan  ZHANG Muzhao  ZOU Yihuai  FANG Jiliang 

Cite this article as: XU T J, LU M X, LI Y Y, et al. Study on rs-fMRI imaging features of depression patients with unilateral basal ganglia stroke based on local consistencyand low-frequency amplitude[J]. Chin J Magn Reson Imaging, 2025, 16(5): 102-107. DOI:10.12015/issn.1674-8034.2025.05.016.


[Abstract] Objective To explore the resting state functional magnetic resonance imaging (rs-fMRI) characteristics of patients with depression after unilateral basal ganglia stroke, and clarify the application value of rs-fMRI in the clinical diagnosis and treatment of patients with depression after unilateral basal ganglia stroke.This study is registered at the Chinese Clinical Trial Registry (No. ChICTR1800016263).Materials and Methods Forty-five stroke patients were included, and based on the results of the 17 item Hamilton Depression Scale (HAMD-17), 23 subjects were included in the post-stroke depression (PSD) group and 22 subjects were included in the non post-stroke depression (NPSD) group. Regional homogeneity (ReHo) and amplitude of low frequency fluctuations (ALFF) analysis methods were used to compare the brain regions with significant differences in ReHo and ALFF values between the two groups of subjects.Results Compared with the PSD group, the NPSD group showed an increase in ReHo values in the left temporal polar gyrus and left anterior cingulate gyrus (t = 5.442 8, 3.507 9; P < 0.05), a decrease in ReHo values in the left fusiform gyrus and left anterior cingulate gyrus (t = -3.552 8, -4.112 4; P < 0.05), and an increase in ALFF values in the right fusiform gyrus, right inferior temporal gyrus, left posterior cingulate gyrus, right cingulate gyrus, right superior marginal gyrus, left anterior central lobule, and right anterior cingulate gyrus (t = 3.514 9, 3.277 5, 4.610 2, 3.734 3, 4.218 9, 3.854 2, 4.342 9, 3.964 4; P < 0.05). The difference between the groups was statistically significant (P < 0.05, FWE correction).Conclusions The default mode network, sensory motor network, and social network of patients with unilateral basal ganglia depression show ReHo and ALFF changes in some brain regions. These imaging features may be key to the occurrence and development of the disease, clarifying the application value of rs-fMRI in the clinical diagnosis and treatment of patients with unilateral basal ganglia depression after stroke. This will help in the early diagnosis and intervention treatment of PSD. This will provide reference for exploring the brain function research and disease prognosis related to the development mechanism of PSD.
[Keywords] post-stroke depression;basal ganglia;regional homogeneity;amplitude of low frequency fluctuations;resting state functional magnetic resonance imaging;magnetic resonance imaging

XU Tianjiao1   LU Mengxin2   LI Yuanyuan3   ZHANG Muzhao2   ZOU Yihuai3   FANG Jiliang1*  

1 Department of Radiology, Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing 100053, China

2 Department of Traditional Chinese Medicine, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100020, China

3 Department of Neurology, Beijing University of Traditional Chinese Medicine Dongzhimen Hospital, Beijing 100700, China

Corresponding author: FANG J L, E-mail: fangmgh@163.com

Conflicts of interest   None.

Received  2025-01-13
Accepted  2025-05-10
DOI: 10.12015/issn.1674-8034.2025.05.016
Cite this article as: XU T J, LU M X, LI Y Y, et al. Study on rs-fMRI imaging features of depression patients with unilateral basal ganglia stroke based on local consistencyand low-frequency amplitude[J]. Chin J Magn Reson Imaging, 2025, 16(5): 102-107. DOI:10.12015/issn.1674-8034.2025.05.016.

[1]
YU K, CHEN X F, GUO J, et al. Assessment of bidirectional relationships between brain imaging-derived phenotypes and stroke: a Mendelian randomization study[J/OL]. BMC Med, 2023, 21(1): 271 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/37491271/. DOI: 10.1186/s12916-023-02982-9.
[2]
SARKAR A, SARMAH D, DATTA A, et al. Post-stroke depression: Chaos to exposition[J]. Brain Res Bull, 2021, 168: 74-88. DOI: 10.1016/j.brainresbull.2020.12.012.
[3]
LIU C, TANG H, LIU C, et al. Transcutaneous auricular vagus nerve stimulation for post-stroke depression: A double-blind, randomized, placebo-controlled trial[J]. J Affect Disord, 2024, 354: 82-88. DOI: 10.1016/j.jad.2024.03.005.
[4]
KIPER P, PRZYSIĘŻNA E, CIEŚLIK B, et al. Effects of Immersive Virtual Therapy as a Method Supporting Recovery of Depressive Symptoms in Post-Stroke Rehabilitation: Randomized Controlled Trial[J]. Clin Interv Aging, 2022, 17: 1673-1685. DOI: 10.2147/CIA.S375754.
[5]
QIU X, LAN Y, MIAO J, et al. Depressive symptom dimensions predict the treatment effect of repetitive transcranial magnetic stimulation for post-stroke depression[J/OL]. J Psychosom Res, 2023, 171: 111382 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/37285667/. DOI: 10.1016/j.jpsychores.2023.111382.
[6]
YAN N, HU S. The safety and efficacy of escitalopram and sertraline in post-stroke depression: a randomized controlled trial[J/OL]. BMC Psychiatry, 2024, 24(1): 365 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/38750479/. DOI: 10.1186/s12888-024-05833-w.
[7]
KWAKKEL G, STINEAR C, ESSERS B, et al. Motor rehabilitation after stroke: European Stroke Organisation (ESO) consensus-based definition and guiding framework[J]. Eur Stroke J, 2023, 8(4): 880-894. DOI: 10.1177/23969873231191304.
[8]
RAIMONDO L, ĹAF OLIVEIRA, HEIJ J, et al. Advances in resting state fMRI acquisitions for functional connectomics[J/OL]. Neuroimage, 2021, 243: 118503 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/34479041/. DOI: 10.1016/j.neuroimage.2021.118503.
[9]
CANARIO E, CHEN D, BISWAL B. A review of resting-state fMRI and its use to examine psychiatric disorders[J]. Psychoradiology, 2021, 1(1): 42-53. DOI: 10.1093/psyrad/kkab003.
[10]
ZHE X, TANG M, AI K, et al. Decreased ALFF and Functional Connectivity of the Thalamus in Vestibular Migraine Patients[J/OL]. Brain Sci, 2023, 13(2): 183 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/36831726/. DOI: 10.3390/brainsci13020183.
[11]
SHEN W, WANG X, LI Q, et al. Research on adults with subthreshold depression after aerobic exercise: a resting-state fMRI study based on regional homogeneity (ReHo)[J/OL]. Front Neurosci, 2024, 18: 1231883 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/38533447/. DOI: 10.3389/fnins.2024.1231883.
[12]
LIU L, HU X, ZHANG Y, et al. Effect of Vestibular Rehabilitation on Spontaneous Brain Activity in Patients With Vestibular Migraine: A Resting-State Functional Magnetic Resonance Imaging Study[J/OL]. Front Hum Neurosci, 2020, 14: 227 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/32595463/. DOI: 10.3389/fnhum.2020.00227.
[13]
LIU S, MA R, LUO Y, et al. Facial Expression Recognition and ReHo Analysis in Major Depressive Disorder[J/OL]. Front Psychol, 2021, 12: 688376 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/34630204/. DOI: 10.3389/fpsyg.2021.688376.
[14]
JIANG S, ZHANG H, FANG Y, et al. Altered Resting-State Brain Activity and Functional Connectivity in Post-Stroke Apathy: An fMRI Study[J/OL]. Brain Sci, 2023, 13(5): 730 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/37239202/. DOI: 10.3390/brainsci13050730.
[15]
CHEN Y, LI X, WANG L, et al. Effects of Repetitive Transcranial Magnetic Stimulation on Cognitive Function in Patients With Stress-Related Depression: A Randomized Double-Blind fMRI and 1H-MRS Study[J/OL]. Front Neurol, 2022, 13: 844606 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/35493813/. DOI: 10.3389/fneur.2022.844606.
[16]
LIN Y H, YOUNG I M, CONNER A K, et al. Anatomy and White Matter Connections of the Inferior Temporal Gyrus[J/OL]. World Neurosurg, 2020, 143: e656-e666 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/32798785/. DOI: 10.1016/j.wneu.2020.08.058.
[17]
MAHGOUB R, BAYRAM A K, SPENCER D D, et al. Functional parcellation of the cingulate gyrus by electrical cortical stimulation: a synthetic literature review and future directions[J]. J Neurol Neurosurg Psychiatry, 2024, 95(8): 704-721. DOI: 10.1136/jnnp-2023-332246.
[18]
SEZER I, PIZZAGALLI D A, SACCHET M D. Resting-state fMRI functional connectivity and mindfulness in clinical and non-clinical contexts: A review and synthesis[J/OL]. Neurosci Biobehav Rev, 2022, 135: 104583 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/35202647/. DOI: 10.1016/j.neubiorev.2022.104583.
[19]
ZHANG H, ZHAO Z, ZHANG S, et al. Altered cingulate gyrus subregions functional connectivity in chronic insomnia disorder with anxiety[J]. Sleep Med, 2024, 123: 42-48. DOI: 10.1016/j.sleep.2024.08.031.
[20]
SUN Y, LI G, LIU X, et al. Cerebral glucose hypometabolism and hypoperfusion of cingulate gyrus: an imaging biomarker of autoimmune encephalitis with psychiatric symptoms[J]. J Neurol, 2024, 271(3): 1247-1255. DOI: 10.1007/s00415-023-12051-z.
[21]
ZHU X, YUAN F, ZHOU G, et al. Cross-network interaction for diagnosis of major depressive disorder based on resting state functional connectivity[J]. Brain Imaging Behav, 2021, 15(3): 1279-1289. DOI: 10.1007/s11682-020-00326-2.
[22]
TANGLAY O, YOUNG I M, DADARIO N B, et al. Anatomy and white-matter connections of the precuneus[J]. Brain Imaging Behav, 2022, 16(2): 574-586. DOI: 10.1007/s11682-021-00529-1.
[23]
JAGGER-RICKELS A, STUMPS A, ROTHLEIN D, et al. Aberrant connectivity in the right amygdala and right middle temporal gyrus before and after a suicide attempt: Examining markers of suicide risk[J]. J Affect Disord, 2023, 335: 24-35. DOI: 10.1016/j.jad.2023.04.061.
[24]
XU J, WANG C, XU Z, et al. Specific Functional Connectivity Patterns of Middle Temporal Gyrus Subregions in Children and Adults with Autism Spectrum Disorder[J]. Autism Res, 2020, 13(3): 410-422. DOI: 10.1002/aur.2239.
[25]
GAN Z, GANGADHARAN V, LIU S, et al. Layer-specific pain relief pathways originating from primary motor cortex[J]. Science, 2022, 378(6626): 1336-1343. DOI: 10.1126/science.add4391.
[26]
TENNANT V R, HARRISON T M, ADAMS J N, et al. Fusiform Gyrus Phospho-Tau is Associated with Failure of Proper Name Retrieval in Aging[J]. Ann Neurol, 2021, 90(6): 988-993. DOI: 10.1002/ana.26237.
[27]
ROSSION B, JACQUES C, JONAS J. The anterior fusiform gyrus: The ghost in the cortical face machine[J/OL]. Neurosci Biobehav Rev, 2024, 158: 105535 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/38191080/. DOI: 10.1016/j.neubiorev.2024.105535.
[28]
CUI Q, CHEN Y, TANG Q, et al. Disrupted dynamic local brain functional connectivity patterns in generalized anxiety disorder[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2020, 99: 109833 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/31812780/. DOI: 10.1016/j.pnpbp.2019.109833
[29]
GIAMPICCOLO D, DUNCAN J S. High plasticity within the precentral gyrus and its relevance for resective neurosurgery[J/OL]. Brain, 2023, 146(11): e98-e99 [2025-01-13]. https://doi.org/10.1093/brain/awad170. DOI: 10.1093/brain/awad170.
[30]
NG S, VALDES P A, MORITZ-GASSER S, et al. Intraoperative functional remapping unveils evolving patterns of cortical plasticity[J]. Brain, 2023, 146(7): 3088-3100. DOI: 10.1093/brain/awad116.
[31]
SUN J, LU Y, KONG D, et al. Cerebral blood flow in the paracentral lobule is associated with poor subjective sleep quality among patients with a history of methadone maintenance treatment[J/OL]. Front Neurol, 2024, 15: 1400810 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/39175760/. DOI: 10.3389/fneur.2024.1400810.
[32]
ZHANG R, ZHANG L, WEI S, et al. Increased Amygdala-Paracentral Lobule/Precuneus Functional Connectivity Associated With Patients With Mood Disorder and Suicidal Behavior[J/OL]. Front Hum Neurosci, 2021, 14: 585664 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/33519398/. DOI: 10.3389/fnhum.2020.585664.
[33]
ZHANG C, ZHU D M, ZHANG Y, et al. Neural substrates underlying REM sleep duration in patients with major depressive disorder: A longitudinal study combining multimodal MRI data[J]. J Affect Disord, 2024, 344: 546-553. DOI: 10.1016/j.jad.2023.10.090.
[34]
KELLER M, ZWEERINGS J, KLASEN M, et al. fMRI Neurofeedback-Enhanced Cognitive Reappraisal Training in Depression: A Double-Blind Comparison of Left and Right vlPFC Regulation[J/OL]. Front Psychiatry, 2021, 12: 715898 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/34497546/. DOI: 10.3389/fpsyt.2021.715898.
[35]
COTOVIO G, OLIVEIRA-MAIA A J. Functional neuroanatomy of mania[J/OL]. Transl Psychiatry, 2022, 12(1): 29 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/35075120/. DOI: 10.1038/s41398-022-01786-4.
[36]
YAN R, HUANG Y, SHI J, et al. Alterations of regional spontaneous neuronal activity and corresponding brain circuits related to non-suicidal self-injury in young adults with major depressive disorder[J]. J Affect Disord, 2022, 305: 8-18. DOI: 10.1016/j.jad.2022.02.040.
[37]
PANG X, WU D, WANG H, et al. Cortical morphological alterations in adolescents with major depression and non-suicidal self-injury[J/OL]. Neuroimage Clin, 2024, 44: 103701 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/39500145/. DOI: 10.1016/j.nicl.2024.103701.
[38]
COMPÈRE L, SIEGLE G J, LAZZARO S, et al. Real-time functional magnetic resonance imaging neurofeedback training of amygdala upregulation increases affective flexibility in depression[J/OL]. J Psychiatry Neurosci, 2023, 48(3): E232-E239 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/37339817/. DOI: 10.1503/jpn.220208.
[39]
CHEN B, ZHONG X, ZHANG M, et al. The additive effect of late-life depression and olfactory dysfunction on the risk of dementia was mediated by hypersynchronization of the hippocampus/fusiform gyrus[J/OL]. Transl Psychiatry, 2021, 11(1): 172 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/33731679/. DOI: 10.1038/s41398-021-01291-0.
[40]
PAN Z, QI H, ZHOU J, et al. Comparison of Brain Function and Structure in Patients with Major Depression: A Systematic Review and Meta-Analysis of MRI-Based Data[J]. Actas Esp Psiquiatr, 2024, 52(4): 561-570. DOI: 10.62641/aep.v52i4.1636.
[41]
HU Y, BING D, LIU A, et al. A preliminary study of fMRI and the relationship with depression and anxiety in Meniere's patients[J/OL]. Am J Otolaryngol, 2025, 46(1): 104531 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/39667311/. DOI: 10.1016/j.amjoto.2024.104531.
[42]
LIU Y, GAO Y, LI M, et al. Childhood sexual abuse related to brain activity abnormalities in right inferior temporal gyrus among major depressive disorder[J/OL]. Neurosci Lett, 2023, 806: 137196 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/36963746/. DOI: 10.1016/j.neulet.2023.137196.
[43]
WALL M B, LAM C, ERTL N, et al. Increased low-frequency brain responses to music after psilocybin therapy for depression[J]. J Affect Disord, 2023, 333: 321-330. DOI: 10.1016/j.jad.2023.04.081.
[44]
DU H, XIA J, FAN J, et al. Spontaneous neural activity in the right fusiform gyrus and putamen is associated with consummatory anhedonia in obsessive compulsive disorder[J]. Brain Imaging Behav, 2022, 16(4): 1708-1720. DOI: 10.1007/s11682-021-00619-0.
[45]
ZHANG S, WANG Y, ZHENG S, et al. Multimodal MRI reveals alterations of the anterior insula and posterior cingulate cortex in bipolar II disorders: A surface-based approach[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2022, 116: 110533 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/35151795/. DOI: 10.1016/j.pnpbp.2022.110533.
[46]
TU Z, WU F, JIANG X, et al. Gender differences in major depressive disorders: A resting state fMRI study[J/OL]. Front Psychiatry, 2022, 13: 1025531 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/36440430/. DOI: 10.3389/fpsyt.2022.1025531.
[47]
LI X K, QIU H T, HU J, et al. Changes in the amplitude of low-frequency fluctuations in specific frequency bands in major depressive disorder after electroconvulsive therapy[J]. World J Psychiatry, 2022, 12(5): 708-721. DOI: 10.5498/wjp.v12.i5.708.
[48]
LI T, DU X, ZHANG X, et al. From study abroad to study at home: Spontaneous neuronal activity predicts depressive symptoms in overseas students during the COVID-19 pandemic[J/OL]. Front Neurosci, 2023, 17: 1078119 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/36816115/. DOI: 10.3389/fnins.2023.1078119.
[49]
WANG X, WU H, WANG D, et al. Reduced suicidality after electroconvulsive therapy is linked to increased frontal brain activity in depressed patients: a resting-state fMRI study[J/OL]. Front Psychiatry, 2023, 14: 1224914 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/37502809/. DOI: 10.3389/fpsyt.2023.1224914.
[50]
LIN H, XIANG X, HUANG J, et al. Abnormal degree centrality values as a potential imaging biomarker for major depressive disorder: A resting-state functional magnetic resonance imaging study and support vector machine analysis[J/OL]. Front Psychiatry, 2022, 13: 960294 [2025-01-13]. https://pubmed.ncbi.nlm.nih.gov/36147977/. DOI: 10.3389/fpsyt.2022.960294.

PREV Research on brain changes in social isolation based on magnetic resonance imaging technology: A Meta-analysis based on activation likelihood estimation
NEXT Preliminary exploration of the value of magnetic resonance arterial spin labeling imaging in the focal evaluation of febrile seizures
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn