Share:
Share this content in WeChat
X
Clinical Article
Three-dimensional pseudo-continuous arterial spin labeling reveals cerebral perfusion abnormalities in children with global developmental delay
ZHOU Liang  ZHAO Xin  CHENG Meiying  WANG Changhao  LIU Shipeng  YANG Jinze  LI Sike  LU Yu  ZHANG Xiaoan 

Cite this article as: ZHOU L, ZHAO X, CHENG M Y, et al. Three-dimensional pseudo-continuous arterial spin labeling reveals cerebral perfusion abnormalities in children with global developmental delay[J]. Chin J Magn Reson Imaging, 2025, 16(5): 113-119. DOI:10.12015/issn.1674-8034.2025.05.018.


[Abstract] Objective To explore the characteristics of cerebral blood flow (CBF) in children with global developmental delay (GDD) using three-dimensional pseudo-continuous arterial spin labeling (3D-pCASL) imaging technology and further investigate the correlation between the Gesell Developmental Scale and CBF. Additionally, the diagnostic efficacy of CBF values in identifying GDD was assessed.Materials and Methods A total of 45 children diagnosed with GDD and 42 healthy control (HC) children were included in this study. All participants underwent magnetic resonance imaging of the brain, including 3D-pCASL scanning. Quantitative CBF pseudocolor maps were obtained through post-processing, and differences in CBF values between the two groups were analyzed. Perform correlation analysis between the CBF values with statistically significant intergroup differences and the Gesell Developmental Scale scores in children with GDD , and the diagnostic efficacy of CBF values in identifying GDD children was evaluated using receiver operating characteristic (ROC) curves.Results Compared with the control group, CBF values in the bilateral temporal lobe white matter, left temporal lobe gray matter, and bilateral frontal lobe white matter were reduced (P < 0.05). Correlation analysis revealed that CBF values in the right and left temporal lobe white matter were positively correlated with the language developmental quotient (r = 0.477, P = 0.001; r = 0.513, P < 0.001), CBF values in the right frontal lobe white matter were positively correlated with the personal-social developmental quotient (r = 0.347, P = 0.019), and CBF values in the left frontal lobe white matter were positively correlated with the fine motor developmental quotient (r = 0.577, P < 0.001). CBF values in multiple brain regions demonstrated good diagnostic efficacy in distinguishing GDD children (AUC > 0.7).Conclusions 3D-pCASL technology can non-invasively assess abnormalities in cerebral blood flow in children with GDD. The study found that reduced CBF values may be associated with impairments in multiple developmental abilities in children with GDD, and CBF values have good diagnostic value in identifying GDD.
[Keywords] global developmental delay;magnetic resonance imaging;three-dimensional pseudo-continuous arterial spin labeling;cerebral blood flow;Gesell Developmental Scale

ZHOU Liang1, 2, 3   ZHAO Xin1, 2, 3   CHENG Meiying1, 2, 3   WANG Changhao1, 2, 3   LIU Shipeng1, 2, 3   YANG Jinze1, 2, 3   LI Sike1, 2, 3   LU Yu1, 2, 3   ZHANG Xiaoan1, 2, 3*  

1 Department of Medical Imaging, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China

2 Henan International Joint Laboratory of Neuromedical Imaging, Zhengzhou 450052, China

3 Henan Provincial Key Laboratory of Pediatric Neuroimaging Medicine, Zhengzhou 450052, China

Corresponding author: ZHANG X A, E-mail: zxa@zzu.edu.cn

Conflicts of interest   None.

Received  2025-03-04
Accepted  2025-04-10
DOI: 10.12015/issn.1674-8034.2025.05.018
Cite this article as: ZHOU L, ZHAO X, CHENG M Y, et al. Three-dimensional pseudo-continuous arterial spin labeling reveals cerebral perfusion abnormalities in children with global developmental delay[J]. Chin J Magn Reson Imaging, 2025, 16(5): 113-119. DOI:10.12015/issn.1674-8034.2025.05.018.

[1]
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (5th ed., text revision)[M]. Washington: American Psychiatric Publishing, 2022.
[2]
BÉLANGER S A, CARON J. Evaluation of the child with global developmental delay and intellectual disability[J]. Paediatr Child Health, 2018, 23(6): 403-419. DOI: 10.1093/pch/pxy093.
[3]
ALMUTIRI R, MALTA M, SHEVELL M I, et al. Evaluation of Individuals with Non-Syndromic Global Developmental Delay and Intellectual Disability[J/OL]. Children (Basel), 2023, 10(3): 414 [2025-03-04]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10047567/. DOI: 10.3390/children10030414.
[4]
ZHANG J, XU Y, LIU Y, et al. Genetic Testing for Global Developmental Delay in Early Childhood[J/OL]. JAMA Netw Open, 2024, 7(6): e2415084 [2025-03-04]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11154162/. DOI: 10.1001/jamanetworkopen.2024.15084.
[5]
Subspecialty Group of Neurology, Chinese Society of Pediatrics, Chinese Medical Association; Project Expert Group of Childhood Neuropathy, China Neurologist Association. Experts' consensus on the diagnostic strategies of etiology for intellectual disability or global developmental delay in children[J]. Chinese Journal of Pediatrics, 2018, 56(11): 806-810. DOI: 10.3760/cma.j.issn.0578-1310.2018.11.003.
[6]
FEI X, SONG Y, YAN S, et al. Relationship between fundamental motor skills and physical fitness in children with global developmental delay[J]. Pediatr Investig, 2024, 8(3): 201-208. DOI: 10.1002/ped4.12452.
[7]
MORI T, ITO H, HARADA M, et al. Multi-delay arterial spin labeling brain magnetic resonance imaging study for pediatric autism[J]. Brain Dev, 2020, 42(4): 315-321. DOI: 10.1016/j.braindev.2020.01.007.
[8]
LIU M, YU W, XU D, et al. Diagnosis for autism spectrum disorder children using T1-based gray matter and arterial spin labeling-based cerebral blood flow network metrics[J/OL]. Front Neurosci, 2024, 18: 1356241 [2025-03-04]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11061487/. DOI: 10.3389/fnins.2024.1356241.
[9]
ZHANG K, YUAN J, PEI X, et al. Cerebral blood flow characteristics of drug-naïve attention-deficit/hyperactivity disorder with social impairment: Evidence for region-symptom specificity[J/OL]. Front Neurosci, 2023, 17: 1149703 [2025-03-04]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10070692/. DOI: 10.3389/fnins.2023.1149703.
[10]
DOLUI S, VIDORRETA M, WANG Z, et al. Comparison of PASL, PCASL, and background-suppressed 3D PCASL in mild cognitive impairment[J]. Hum Brain Mapp, 2017, 38(10): 5260-5273. DOI: 10.1002/hbm.23732.
[11]
ALSOP D C, DETRE J A, GOLAY X, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia[J]. Magn Reson Med, 2015, 73(1): 102-116. DOI: 10.1002/mrm.25197.
[12]
YE F, DU L, LIU B, et al. Application of pseudocontinuous arterial spin labeling perfusion imaging in children with autism spectrum disorders[J/OL]. Front Neurosci, 2022, 16: 1045585 [2025-03-04]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9680558/. DOI: 10.3389/fnins.2022.1045585.
[13]
TADDEI M, BULGHERONI S, TOFFALINI E, et al. Developmental profiles of young children with autism spectrum disorder and global developmental delay: A study with the Griffiths Ⅲ scales[J]. Autism Res, 2023, 16(7): 1344-1359. DOI: 10.1002/aur.2953.
[14]
LI L, ZHAO J S, GAO Z F, et al. Application of apparent diffusion coefficient in children aged 2-12 years with intellectual disability/global developmental delay who have normal conventional brain MRI findings[J]. Chinese Journal of Contemporary Pediatrics, 2019, 21(6): 541-546. DOI: 10.7499/j.issn.1008-8830.2019.06.008.
[15]
ZHANG C, LI W L, LU L, et al. Influence of bronchopulmonary dysplasia on cerebral blood flow in preterm infants: a prospective study based on arterial spin labeling[J]. Chinese Journal of Contemporary Pediatrics, 2023, 25(1): 31-37. DOI: 10.7499/j.issn.1008-8830.2208068.
[16]
HWANG H, KIM S E, L H J, et al. Identification of amnestic mild cognitive impairment by structural and functional MRI using a machine-learning approach[J/OL]. Clin Neurol Neurosurg, 2024, 238: 108177 [2025-03-04]. https://pubmed.ncbi.nlm.nih.gov/38402707/. DOI: 10.1016/j.clineuro.2024.108177.
[17]
LIAO Q M, ZHANG Z J, YANG X, et al. Changes of structural functional connectivity coupling and its correlations with cognitive function in patients with major depressive disorder[J]. J Affect Disord, 2024, 351: 259-267. DOI: 10.1016/j.jad.2024.01.173.
[18]
SUBTIRELU R, WRITER M, TEICHNER E, et al. Potential Neuroimaging Biomarkers for Autism Spectrum Disorder: A Comprehensive Review of MR Imaging, fMR Imaging, and PET Studies[J]. PET Clin, 2025, 20(1): 25-37. DOI: 10.1016/j.cpet.2024.09.010.
[19]
ZHANG X X, ZHAO X, SHEN Y Y, et al. Diffusion kurtosis imaging reveals microstructural abnormalities in cerebral white matter fiber tracts in children with global developmental delay[J]. Chinese Journal of Magnetic Resonance Imaging, 2024, 15(6): 19-23, 30. DOI: 10.12015/issn.1674-8034.2024.06.002.
[20]
ZHANG X X, ZHAO X, SHEN Y Y, et al. Application of magnetic resonance diffusion kurtosis imaging in children with global developmental delay[J]. Chinese Journal of Medical Imaging, 2024, 32(8): 761-766. DOI: 10.3969/j.issn.1005-5185.2024.08.002.
[21]
LI S K, CHENG M Y, ZHANG L J, et al. 3D-pCASL in the developmental brain abnormalities of preterm infants born to hypertensive mothers during pregnancy[J]. Chinese Journal of Magnetic Resonance Imaging, 2025, 16(2): 7-13. DOI: 10.12015/issn.1674-8034.2025.02.002.
[22]
WU C, HONARMAND A R, SCHNELL S, et al. Age-Related Changes of Normal Cerebral and Cardiac Blood Flow in Children and Adults Aged 7 Months to 61 Years[J/OL]. J Am Heart Assoc, 2016, 5(1): e002657 [2025-03-04]. https://pmc.ncbi.nlm.nih.gov/articles/PMC4859381/. DOI: 10.1161/JAHA.115.002657.
[23]
VIPIN A, LEE B T K, KUMAR D, et al. The role of perfusion, grey matter volume and behavioural phenotypes in the data-driven classification of cognitive syndromes[J/OL]. Alzheimers Res Ther, 2024, 16(1): 40 [2025-03-04]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10874041/. DOI: 10.1186/s13195-024-01410-1.
[24]
MESULAM M M. Temporopolar regions of the human brain[J]. Brain, 2023, 146(1): 20-41. DOI: 10.1093/brain/awac339.
[25]
TAMNES C K, HERTING M M, GODDINGS A L, et al. Development of the Cerebral Cortex across Adolescence: A Multisample Study of Inter-Related Longitudinal Changes in Cortical Volume, Surface Area, and Thickness[J]. J Neurosci, 2017, 37(12): 3402-3412. DOI: 10.1523/JNEUROSCI.3302-16.2017.
[26]
JEONG J W, SUNDARAM S, BEHEN M E, et al. Relationship between genotype and arcuate fasciculus morphology in six young children with global developmental delay: Preliminary DTI stuy[J]. J Magn Reson Imaging, 2016, 44(6): 1504-1512. DOI: 10.1002/jmri.25306.
[27]
SUNDARAM S K, SIVASWAMY L, MAKKI M I, et al. Absence of arcuate fasciculus in children with global developmental delay of unknown etiology: a diffusion tensor imaging study[J]. J Pediatr, 2008, 152(2): 250-255. DOI: 10.1016/j.jpeds.2007.06.037.
[28]
STASENKO A, KAESTNER E, ARIENZO D, et al. Bilingualism and Structural Network Organization in Temporal Lobe Epilepsy: Resilience in Neurologic Disease[J/OL]. Neurology, 2023, 100(18): e1887-e1899 [2025-03-04]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10159767/. DOI: 10.1212/WNL.0000000000207087.
[29]
CAI H, DONG J, MEI L, et al. Functional and structural abnormalities of the speech disorders: a multimodal activation likelihood estimation meta-analysis[J/OL]. Cereb Cortex, 2024, 34(3): bhae075 [2025-03-04]. https://pubmed.ncbi.nlm.nih.gov/38466117/. DOI: 10.1093/cercor/bhae075.
[30]
BATTAGLIA-MAYER A, CAMINITI R. Parieto-frontal networks for eye-hand coordination and movements[J]. Handb Clin Neurol, 2018, 151: 499-524. DOI: 10.1016/B978-0-444-63622-5.00026-7.
[31]
DZIEDZIC T A, BALA A, BALASA A, et al. Cortical and white matter anatomy relevant for the lateral and superior approaches to resect intraaxial lesions within the frontal lobe[J/OL]. Sci Rep, 2022, 12(1): 21402 [2025-03-04]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9741612/. DOI: 10.1038/s41598-022-25375-z.
[32]
TANG S, NIE L, LIU X, et al. Application of Quantitative Magnetic Resonance Imaging in the Diagnosis of Autism in Children[J/OL]. Front Med (Lausanne), 2022, 9: 818404 [2025-03-04]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9133426/. DOI: 10.3389/fmed.2022.818404.
[33]
MEDIANE D H, BASU S, CAHILL E N, et al. Medial prefrontal cortex circuitry and social behaviour in autism[J/OL]. Neuropharmacology, 2024, 260: 110101 [2025-03-04]. https://pubmed.ncbi.nlm.nih.gov/39128583/. DOI: 10.1016/j.neuropharm.2024.110101.
[34]
OMONT-LESCIEUX S, MENU I, SALVIA E, et al. Lateralization of the cerebral network of inhibition in children before and after cognitive training[J/OL]. Dev Cogn Neurosci, 2023, 63: 101293 [2025-03-04]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10498008/. DOI: 10.1016/j.dcn.2023.101293.
[35]
LEBEL C, DEONI S. The development of brain white matter microstructure[J]. Neuroimage, 2018, 182: 207-218. DOI: 10.1016/j.neuroimage.2017.12.097.

PREV Preliminary exploration of the value of magnetic resonance arterial spin labeling imaging in the focal evaluation of febrile seizures
NEXT Correlation study of local habitat entropy based on multimodal MRI for predicting IDH molecular status in adult-type diffuse glioma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn