Share:
Share this content in WeChat
X
Clinical Article
Value of diffusion kurtosis imaging combined with conventional MRI in the differential diagnosis of benign and malignant thyroid nodules
TANG Qiying  LIU Xinyou  JIANG Qiuli  ZHU Liuhong  ZHOU Jianjun 

Cite this article as: TANG Q Y, LIU X Y, JIANG Q L, et al. Value of diffusion kurtosis imaging combined with conventional MRI in the differential diagnosis of benign and malignant thyroid nodules[J]. Chin J Magn Reson Imaging, 2025, 16(5): 136-142. DOI:10.12015/issn.1674-8034.2025.05.021.


[Abstract] Objective To assess the diagnostic value of unenhanced MRI with diffusion kurtosis imaging (DKI) in differential diagnosis between thyroid benign and malignant nodules.Materials and Methods A total of 96 consecutive patients, each with a single thyroid nodule, were included in this study. Among these, 39 nodules were histopathologically confirmed as benign, while 57 were malignant. All patients underwent thyroid MRI, which included T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and DKI. Two radiologists independently evaluated the images, measuring the signal intensity ratio (SIR) on T1WI and T2WI, the apparent diffusion coefficient (ADC) from DWI, as well as mean diffusivity (MD) and mean kurtosis (MK) from DKI. Additionally, morphological features of the nodules were assessed. Univariate and multivariate logistic regression analyses were performed to determine the predictive value of these imaging parameters and morphological features for malignancy. To assess the robustness of the logistic regression model, a 5-fold cross-validation approach was applied. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic effectiveness of the continuous variables that were statistically significant in the multivariate analysis.Results The characteristics of thyroid malignant nodules including lower ADC values (P < 0.001), lower MD values (P < 0.001), higher MK values (P < 0.001), younger age (P < 0.001), smaller tumor size (P < 0.001), solid component (P < 0.001), and irregular margins (P < 0.001). Multivariate analysis further revealed that lower MD values (odds ratio = 5.046; P = 0.001), smaller tumor size (odds ratio = 3.817; P = 0.001), and irregular margins (odds ratio = 84.876; P < 0.001) were independent risk factors for thyroid malignant nodules. The combined model yielded an average area under the ROC curve of 0.968 in 5-fold cross-validation, with a sensitivity of 91.4%, specificity of 84.6%, accuracy of 88.7%, and an F1 score of 0.904 at the optimal cutoff value of 0.42.Conclusions MD values derived from DKI, combined with morphological features can provide imaging diagnostic basis for the preoperative differential diagnosis between thyroid benign and malignant nodules.
[Keywords] thyroid neoplasms;thyroid carcinoma;magnetic resonance imaging;diffusion kurtosis imaging;differential diagnosis

TANG Qiying1, 2   LIU Xinyou3   JIANG Qiuli4   ZHU Liuhong1, 2   ZHOU Jianjun1, 2*  

1 Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China

2 Xiamen Municipal Clinical Research Center for Medical Imaging, Xiamen 361015, China

3 Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China

4 Department of Pathology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China

Corresponding author: ZHOU J J, E-mail: zhoujianjunzs@126.com

Conflicts of interest   None.

Received  2025-02-23
Accepted  2025-05-09
DOI: 10.12015/issn.1674-8034.2025.05.021
Cite this article as: TANG Q Y, LIU X Y, JIANG Q L, et al. Value of diffusion kurtosis imaging combined with conventional MRI in the differential diagnosis of benign and malignant thyroid nodules[J]. Chin J Magn Reson Imaging, 2025, 16(5): 136-142. DOI:10.12015/issn.1674-8034.2025.05.021.

[1]
BOUCAI L, ZAFEREO M, CABANILLAS M E. Thyroid cancer: a review[J]. JAMA, 2024, 331(5): 425-435. DOI: 10.1001/jama.2023.26348.
[2]
LI Y H, JIN C, LI J, et al. Prevalence of thyroid nodules in China: a health examination cohort-based study[J/OL]. Front Endocrinol (Lausanne), 2021, 12: 676144 [2025-02-22]. https://pubmed.ncbi.nlm.nih.gov/34122350/. DOI: 10.3389/fendo.2021.676144.
[3]
ÖZDEMIR M, TÜRK G, BILGILI M, et al. Comparison of diagnostic performances of ATA guidelines, ACR-TIRADS, and EU-TIRADS and modified K-TIRADS: a single center study of 4238 thyroid nodules[J]. Exp Clin Endocrinol Diabetes, 2025, 133(2): 98-104. DOI: 10.1055/a-2498-7952.
[4]
SI C F, YU J, CUI Y Y, et al. Comparison of diagnostic performance of the current score-based ultrasound risk stratification systems according to thyroid nodule size[J]. Quant Imaging Med Surg, 2024, 14(12): 9234-9245. DOI: 10.21037/qims-24-282.
[5]
WATKINS L, O'NEILL G, YOUNG D, et al. Comparison of British thyroid association, American college of radiology TIRADS and artificial intelligence TIRADS with histological correlation: diagnostic performance for predicting thyroid malignancy and unnecessary fine needle aspiration rate[J/OL]. Br J Radiol, 2021, 94(1123): 20201444 [2025-02-22]. https://pubmed.ncbi.nlm.nih.gov/33989038/. DOI: 10.1259/bjr.20201444.
[6]
KIM P H, SUH C H, BAEK J H, et al. Unnecessary thyroid nodule biopsy rates under four ultrasound risk stratification systems: a systematic review and meta-analysis[J]. Eur Radiol, 2021, 31(5): 2877-2885. DOI: 10.1007/s00330-020-07384-6.
[7]
MARTÍN-NOGUEROL T, SANTOS-ARMENTIA E, FERNANDEZ-PALOMINO J, et al. Role of advanced MRI sequences for thyroid lesions assessment. A narrative review[J/OL]. Eur J Radiol, 2024, 176: 111499 [2025-02-22]. https://pubmed.ncbi.nlm.nih.gov/38735157/. DOI: 10.1016/j.ejrad.2024.111499.
[8]
TESSLER F N, MIDDLETON W D, GRANT E G, et al. ACR thyroid imaging, reporting and data system (TI-RADS): white paper of the ACR TI-RADS committee[J]. J Am Coll Radiol, 2017, 14(5): 587-595. DOI: 10.1016/j.jacr.2017.01.046.
[9]
SONG B, CHEN Q H, WANG H, et al. Enhancing diagnostic accuracy of American college of radiology TI-RADS 4 nodules: nomogram models based on MRI morphological features[J]. Quant Imaging Med Surg, 2025, 15(2): 1679-1693. DOI: 10.21037/qims-24-1427.
[10]
CUI Y Y, WANG X H, WANG Y, et al. Restriction spectrum imaging and diffusion kurtosis imaging for assessing proliferation status in rectal carcinoma[J]. Acad Radiol, 2025, 32(1): 201-209. DOI: 10.1016/j.acra.2024.08.021.
[11]
JENSEN J H, HELPERN J A. MRI quantification of non-Gaussian water diffusion by kurtosis analysis[J]. NMR Biomed, 2010, 23(7): 698-710. DOI: 10.1002/nbm.1518.
[12]
ZHANG N G, ZHAO W, SHANG S A, et al. Diffusion kurtosis imaging in diagnosing Parkinson's disease: a preliminary comparison study between kurtosis metric and radiomic features[J]. Acad Radiol, 2025, 32(2): 922-929. DOI: 10.1016/j.acra.2024.07.001.
[13]
CHEN Y, HUANG N, ZHENG Y Y, et al. Characterization of parotid gland tumors: whole-tumor histogram analysis of diffusion weighted imaging, diffusion kurtosis imaging, and intravoxel incoherent motion-A pilot study[J/OL]. Eur J Radiol, 2024, 170: 111199 [2025-02-22]. https://pubmed.ncbi.nlm.nih.gov/38104494/. DOI: 10.1016/j.ejrad.2023.111199.
[14]
KAUR G, MANCHANDA S, SHARMA R, et al. Comparison of conventional diffusion-weighted imaging, diffusion kurtosis imaging and intravoxel incoherent motion in characterization of sonographically indeterminate adnexal masses[J]. Abdom Radiol (NY), 2024, 49(5): 1512-1521. DOI: 10.1007/s00261-024-04292-x.
[15]
LIU S H, SHAO S, WEI K J, et al. Diagnostic value of DCE-MRI combined with DKI in predicting the triple negative breast cancer[J]. Chin J Magn Reson Imag, 2023, 14(5): 110-115. DOI: 10.12015/issn.1674-8034.2023.05.020.
[16]
SHI R Y, YAO Q Y, ZHOU Q Y, et al. Preliminary study of diffusion kurtosis imaging in thyroid nodules and its histopathologic correlation[J]. Eur Radiol, 2017, 27(11): 4710-4720. DOI: 10.1007/s00330-017-4874-0.
[17]
JIANG L L, CHEN J, HUANG H P, et al. Comparison of the differential diagnostic performance of intravoxel incoherent motion imaging and diffusion kurtosis imaging in malignant and benign thyroid nodules[J/OL]. Front Oncol, 2022, 12: 895972 [2025-02-22]. https://pubmed.ncbi.nlm.nih.gov/35936691/. DOI: 10.3389/fonc.2022.895972.
[18]
HUANG J, DUAN Z Q, CHENG Y, et al. Advanced diffusion-weighted imaging-derived quantitative parameters as biomarkers of fibrosarcoma-cell proliferation in nude mice: a study based on precise imaging-pathology correlation[J/OL]. Magn Reson Imaging, 2025, 118: 110345 [2025-02-22]. https://pubmed.ncbi.nlm.nih.gov/39892483/. DOI: 10.1016/j.mri.2025.110345.
[19]
SONG Q L, DONG W, TIAN S F, et al. Diffusion kurtosis imaging with multiple quantitative parameters for predicting microsatellite instability status of endometrial carcinoma[J]. Abdom Radiol (NY), 2023, 48(12): 3746-3756. DOI: 10.1007/s00261-023-04041-6.
[20]
LE B D. Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure[J]. Radiology, 2013, 268(2): 318-322. DOI: 10.1148/radiol.13130420.
[21]
CHO E, BAEK H J, SZCZEPANKIEWICZ F, et al. Clinical experience of tensor-valued diffusion encoding for microstructure imaging by diffusional variance decomposition in patients with breast cancer[J]. Quant Imaging Med Surg, 2022, 12(3): 2002-2017. DOI: 10.21037/qims-21-870.
[22]
WANG F, CHEN H G, ZHANG R Y, et al. Diffusion kurtosis imaging to assess correlations with clinicopathologic factors for bladder cancer: a comparison between the multi-b value method and the tensor method[J]. Eur Radiol, 2019, 29(8): 4447-4455. DOI: 10.1007/s00330-018-5977-y.
[23]
LIU Y C, LIU H, ZHAN J, et al. Contrast-enhanced ultrasound for diagnosing thyroid nodules with indeterminate cytology: a retrospective study[J]. Clin Endocrinol, 2025, 102(2): 223-231. DOI: 10.1111/cen.15160.
[24]
SHARAFELDEEN A, ELSHARKAWY M, KHALED R, et al. Texture and shape analysis of diffusion-weighted imaging for thyroid nodules classification using machine learning[J]. Med Phys, 2022, 49(2): 988-999. DOI: 10.1002/mp.15399.
[25]
ZHANG G L, YANG Y P, ZHOU H L, et al. Diagnostic efficacy of CEUS TI-RADS classification for benign and malignant thyroid nodules[J]. Clin Hemorheol Microcirc, 2025, 89(1): 27-41. DOI: 10.3233/CH-232080.
[26]
HAUGEN B R, ALEXANDER E K, BIBLE K C, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer[J]. Thyroid, 2016, 26(1): 1-133. DOI: 10.1089/thy.2015.0020.
[27]
CAVALLO A, JOHNSON D N, WHITE M G, et al. Thyroid nodule size at ultrasound as a predictor of malignancy and final pathologic size[J]. Thyroid, 2017, 27(5): 641-650. DOI: 10.1089/thy.2016.0336.
[28]
SHAYGANFAR A, HASHEMI P, ESFAHANI M M, et al. Prediction of thyroid nodule malignancy using thyroid imaging reporting and data system (TIRADS) and nodule size[J]. Clin Imag, 2020, 60(2): 222-227. DOI: 10.1016/j.clinimag.2019.10.004.
[29]
NODA Y, KANEMATSU M, GOSHIMA S, et al. MRI of the thyroid for differential diagnosis of benign thyroid nodules and papillary carcinomas[J/OL]. AJR Am J Roentgenol, 2015, 204(3): W332-W335 [2025-02-22]. https://pubmed.ncbi.nlm.nih.gov/25714319/. DOI: 10.2214/AJR.14.13344.
[30]
FUKUSHIMA M, FUKUNARI N, MURAKAMI T, et al. Reconfirmation of the accuracy of the taller-than-wide sign in multicenter collaborative research in Japan[J]. Endocr J, 2021, 68(8): 897-904. DOI: 10.1507/endocrj.EJ20-0379.
[31]
KIM E K, PARK C S, CHUNG W Y, et al. New sonographic criteria for recommending fine-needle aspiration biopsy of nonpalpable solid nodules of the thyroid[J]. AJR Am J Roentgenol, 2002, 178(3): 687-691. DOI: 10.2214/ajr.178.3.1780687.
[32]
YOON S J, YOON D Y, CHANG S K, et al. "Taller-than-wide sign" of thyroid malignancy: comparison between ultrasound and CT[J/OL]. AJR Am J Roentgenol, 2010, 194(5): W420-W424 [2025-02-22]. https://pubmed.ncbi.nlm.nih.gov/20410388/. DOI: 10.2214/AJR.09.3376.
[33]
DURANTE C, HEGEDÜS L, CZARNIECKA A, et al. 2023 European Thyroid Association Clinical Practice Guidelines for thyroid nodule management[J/OL]. Eur Thyroid J, 2023, 12(5): e230067 [2025-02-22]. https://pubmed.ncbi.nlm.nih.gov/37358008/. DOI: 10.1530/ETJ-23-0067.
[34]
Interventional Ultrasound Committee of Chinese College of Interventionalists, XU D, LIANG P, et al. Expert consensus on ultrasound guided thyroid and neck lymph node puncture(2023 edition)[J]. Chin J Intern Med, 2024, 63(6): 550-559. DOI: 10.3760/cma.j.cn112138-20240426-00122.

PREV Differential diagnosis of autoimmune encephalitis and herpes simplex virus encephalitis using radiomics models based on multimodal MRI
NEXT Diagnostic value of cardiac magnetic resonance feature tracking technique in non-dilated left ventricular cardiomyopathy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn