Share:
Share this content in WeChat
X
Clinical Article
Evaluation of the influence of left ventricular myocardial fibrosis on biventricular function in patients with coronary artery disease based on cardiac magnetic resonance feature tracking
NI Luying  ZHANG Qian  BAO Changjin  YU Mengmeng  ZHANG Di  JIANG Xingyue 

Cite this article as: NI L Y, ZHANG Q, BAO C J, et al. Evaluation of the influence of left ventricular myocardial fibrosis on biventricular function in patients with coronary artery disease based on cardiac magnetic resonance feature tracking[J]. Chin J Magn Reson Imaging, 2025, 16(5): 149-156. DOI:10.12015/issn.1674-8034.2025.05.023.


[Abstract] Objective To evaluate the influence of left ventricular myocardial fibrosis on left and right ventricular function in patients with coronary artery disease (CAD) based on cardiac magnetic resonance feature tracking (CMR-FT) technique, and to explore the biventricular interaction.Materials and Methods A total of 50 patients diagnosed with CAD and 32 healthy subjects from September 2023 to March 2025 were retrospectively analyzed. The left and right ventricle conventional cardiac function parameters, global strain parameters, including circumferential peak strain (PCS), radial peak strain (PRS) and longitudinal peak strain (PLS), and left ventricular late gadolinium enhancement percentage (%LGE) were measured after post-processing. According to the median value of %LGE, CAD patients were divided into %LGE ≥ 6% group and %LGE < 6% group. One-way analysis of variance, non-parametric test, Chi-square test and other statistical methods were used to compare the differences in clinical data and CMR parameters between the control group and different patient groups. Spearman or Pearson correlation coefficient was used to analyze the correlation between right ventricular function and left ventricular function as well as myocardial fibrosis, and multiple linear regression analysis was further performed.Results Compared with the %LGE < 6% group, left ventricle global PCS, PRS, PLS, ejection fraction (EF) and right ventricle global PLS were decreased, while left ventricular end-diastolic volume (EDV), end-diastolic volume index (EDVi), end-systolic volume (ESV), end-systolic volume index (ESVi), left ventricular mass (LVM), left ventricular mass index (LVMi) and %LGE were increased in the %LGE ≥ 6% group (all P < 0.05). Correlation analysis showed that right ventricle global PCS and PLS were positively correlated with left ventricular global PCS, PRS, PLS and EF, and negatively correlated with left ventricular EDVi, ESVi and %LGE (r = -0.762 to 0.731, all P < 0.05). Linear regression analysis showed that right ventricular global PCS was independently and positively correlated with left ventricular global PLS (β = 0.356, P = 0.011), and independently and negatively correlated with left ventricular ESVi (β = -0.362, P = 0.010); Right ventricular global PLS was independently and positively correlated with left ventricular global PRS (β = 0.291, P = 0.022), and independently and negatively correlated with %LGE (β = -0.344, P = 0.003).Conclusions Even though there are no significant changes in the conventional cardiac function parameters of the right ventricle, the left and right ventricular strains in CAD patients are impaired after left ventricular myocardial fibrosis. In addition, the right ventricular strain is independently and positively correlated with the left ventricular strain, and independently and negatively correlated with the degree of left ventricular myocardial fibrosis. CMR-FT can provide earlier and more accurate information for ventricular function impairment in CAD patients, and provide a new basis for early treatment.
[Keywords] feature tracking;strain;coronary artery disease;ventricular function;magnetic resonance imaging

NI Luying1, 2   ZHANG Qian1, 2   BAO Changjin1   YU Mengmeng1   ZHANG Di1   JIANG Xingyue1, 2*  

1 Department of Radiology, Binzhou Medical University Hospital, Binzhou 256603, China

2 School of Medical Imaging, Binzhou Medical University, Yantai 264003, China

Corresponding author: JIANG X Y, E-mail: xyjiang188@sina.com

Conflicts of interest   None.

Received  2025-01-26
Accepted  2025-05-09
DOI: 10.12015/issn.1674-8034.2025.05.023
Cite this article as: NI L Y, ZHANG Q, BAO C J, et al. Evaluation of the influence of left ventricular myocardial fibrosis on biventricular function in patients with coronary artery disease based on cardiac magnetic resonance feature tracking[J]. Chin J Magn Reson Imaging, 2025, 16(5): 149-156. DOI:10.12015/issn.1674-8034.2025.05.023.

[1]
THIENE G. Ischaemic myocardial fibrosis is the villain of sudden coronary death[J]. Eur Heart J, 2022, 43(47): 4931-4932. DOI: 10.1093/eurheartj/ehac571.
[2]
ZEGARD A, OKAFOR O, DE BONO J, et al. Myocardial fibrosis as a predictor of sudden death in patients with coronary artery disease[J]. J Am Coll Cardiol, 2021, 77(1): 29-41. DOI: 10.1016/j.jacc.2020.10.046.
[3]
CALVIERI C, RIVA A, STURLA F, et al. Left ventricular adverse remodeling in ischemic heart disease: emerging cardiac magnetic resonance imaging biomarkers[J/OL]. J Clin Med, 2023, 12(1): 334 [2025-01-25]. https://pubmed.ncbi.nlm.nih.gov/36615133/. DOI: 10.3390/jcm12010334.
[4]
SANZ J, SÁNCHEZ-QUINTANA D, BOSSONE E, et al. Anatomy, function, and dysfunction of the right ventricle JACC state-of-the-art review[J]. J Am Coll Cardiol, 2019, 73(12): 1463-1482. DOI: 10.1016/j.jacc.2018.12.076.
[5]
GORGIS S, GUPTA K, LEMOR A, et al. Impact of right ventricular dysfunction on outcomes in acute myocardial infarction and cardiogenic shock: insights from the national cardiogenic shock initiative[J]. J Card Fail, 2024, 30(10): 1275-1284. DOI: 10.1016/j.cardfail.2024.07.015.
[6]
SABE M A, SABE S A, KUSUNOSE K, et al. Predictors and prognostic significance of right ventricular ejection fraction in patients with ischemic cardiomyopathy[J]. Circulation, 2016, 134(9): 656-665. DOI: 10.1161/CIRCULATIONAHA.116.022339.
[7]
PEDRIZZETTI G, CLAUS P, KILNER P J, et al. Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use[J/OL]. J Cardiovasc Magn Reson, 2016, 18(1): 51 [2025-01-25]. https://pubmed.ncbi.nlm.nih.gov/27561421/. DOI: 10.1186/s12968-016-0269-7.
[8]
THOMAS K E, FOTAKI A, BOTNAR R M, et al. Imaging methods: magnetic resonance imaging[J/OL]. Circ Cardiovasc Imaging, 2023, 16(1): e014068 [2025-01-25]. https://pubmed.ncbi.nlm.nih.gov/36649450/. DOI: 10.1161/circimaging.122.014068.
[9]
GAO Y F, LI B X, MA Y H, et al. Myocardial mechanical function measured by cardiovascular magnetic resonance in patients with heart failure[J/OL]. J Cardiovasc Magn Reson, 2024, 26(2): 101111 [2025-01-25]. https://pubmed.ncbi.nlm.nih.gov/39433255/. DOI: 10.1016/j.jocmr.2024.101111.
[10]
POLACIN M, KAROLYI M, EBERHARD M, et al. Segmental strain analysis for the detection of chronic ischemic scars in non-contrast cardiac MRI cine images[J/OL]. Sci Rep, 2021, 11(1): 12376 [2025-01-25]. https://pubmed.ncbi.nlm.nih.gov/34117271/. DOI: 10.1038/s41598-021-90283-7.
[11]
ZHAO Y N, CUI J N, ZHANG X H, et al. Right ventricular function and determining factors of dysfunction in ST-segment-elevation myocardial infarction: a cross-sectional study with cardiac magnetic resonance imaging (MRI)[J]. Quant Imaging Med Surg, 2024, 14(9): 6895-6907. DOI: 10.21037/qims-23-1804.
[12]
LIANG S C, CHEN S, BAI Y L, et al. Interventricular septum involvement is related to right ventricular dysfunction in anterior STEMI patients without right ventricular infarction: a cardiovascular magnetic resonance study[J]. Int J Cardiovasc Imaging, 2024, 40(8): 1755-1765. DOI: 10.1007/s10554-024-03166-z.
[13]
VRINTS C, ANDREOTTI F, KOSKINAS K C, et al. 2024 ESC Guidelines for the management of chronic coronary syndromes[J]. Eur Heart J, 2024, 45(36): 3415-3537. DOI: 10.1093/eurheartj/ehae177.
[14]
ÅKESSON J, OSTENFELD E, CARLSSON M, et al. Deep learning can yield clinically useful right ventricular segmentations faster than fully manual analysis[J/OL]. Sci Rep, 2023, 13(1): 1216 [2025-01-25]. https://pubmed.ncbi.nlm.nih.gov/36681759/. DOI: 10.1038/s41598-023-28348-y.
[15]
SCHULZ-MENGER J, BLUEMKE D A, BREMERICH J, et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance - 2020 update: Society for Cardiovascular Magnetic Resonance (SCMR): Board of Trustees Task Force on Standardized Post-Processing[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 19 [2025-01-25]. https://pubmed.ncbi.nlm.nih.gov/32160925/. DOI: 10.1186/s12968-020-00610-6.
[16]
MAO L, QIAO Y Y, LI X M, et al. Evaluation of right ventricular function in patients with coronary heart disease involving the right coronary artery stenosis by RT-3DE combined with autostrain RV[J]. Chin J Arterioscler, 2024, 32(2): 133-140. DOI: 10.20039/j.cnki.1007-3949.2024.02.006.
[17]
DUO G S, LIU T, DAI X. Clinical evaluation of cardiac magnetic resonance tissue tracking technology for coronary heart disease patients with myocardial infarction[J]. Chin J Magn Reson Imag, 2018, 9(5): 346-353. DOI: 10.12015/issn.1674-8034.2018.05.005.
[18]
WU Q, TIAN X, LAN H L. The research progress of myocardial strain derived from cardiovascular magnetic resonance feature tracking in cardiac diseases[J]. Chin J CT MRI, 2024, 22(10): 174-176, 188. DOI: 10.3969/j.issn.1672-5131.2024.10.057.
[19]
REINDL M, TILLER C, HOLZKNECHT M, et al. Global longitudinal strain by feature tracking for optimized prediction of adverse remodeling after ST-elevation myocardial infarction[J]. Clin Res Cardiol, 2021, 110(1): 61-71. DOI: 10.1007/s00392-020-01649-2.
[20]
CHADALAVADA S, FUNG K, RAUSEO E, et al. Myocardial strain measured by cardiac magnetic resonance predicts cardiovascular morbidity and death[J]. J Am Coll Cardiol, 2024, 84(7): 648-659. DOI: 10.1016/j.jacc.2024.05.050.
[21]
HOLZKNECHT M, REINDL M, TILLER C, et al. Global longitudinal strain improves risk assessment after ST-segment elevation myocardial infarction: a comparative prognostic evaluation of left ventricular functional parameters[J]. Clin Res Cardiol, 2021, 110(10): 1599-1611. DOI: 10.1007/s00392-021-01855-6.
[22]
JANWETCHASIL P, YINDEENGAM A, KRITTAYAPHONG R. Prognostic value of global longitudinal strain in patients with preserved left ventricular systolic function: a cardiac magnetic resonance real-world study[J/OL]. J Cardiovasc Magn Reson, 2024, 26(2): 101057 [2025-01-25]. https://pubmed.ncbi.nlm.nih.gov/38971500/. DOI: 10.1016/j.jocmr.2024.101057.
[23]
VILLAR-CALLE P, KOCHAV J D, VADAKETH K, et al. Tissue-based predictors of impaired right ventricular strain in coronary artery disease: a multicenter stress perfusion study[J/OL]. Circ Cardiovasc Imaging, 2024, 17(8): e016852 [2025-01-25]. https://pubmed.ncbi.nlm.nih.gov/39163376/. DOI: 10.1161/CIRCIMAGING.124.016852.
[24]
KESKIN M, UZUN A O, HAYıROĞLU M İ, et al. The association of right ventricular dysfunction with in-hospital and 1-year outcomes in anterior myocardial infarction[J]. Int J Cardiovasc Imaging, 2019, 35(1): 77-85. DOI: 10.1007/s10554-018-1438-6.
[25]
SHEN L T, SHI K, YANG Z G, et al. The right ventricular dysfunction and ventricular interdependence in patients with T2DM and aortic regurgitation: an assessment using CMR feature tracking[J/OL]. Cardiovasc Diabetol, 2024, 23(1): 294 [2025-01-25]. https://pubmed.ncbi.nlm.nih.gov/39118075/. DOI: 10.1186/s12933-024-02372-2.
[26]
LI R, HUANG Y X, CHEN Z X, et al. Evaluation of right ventricular strains by cardiac magnetic resonance feature tracking[J]. Chin J Magn Reson Imag, 2021, 12(10): 98-100, 104. DOI: 10.12015/issn.1674-8034.2021.10.025.
[27]
ESPERSEN C, SKAARUP K G, LASSEN M C H, et al. Right ventricular free wall and four-chamber longitudinal strain in relation to incident heart failure in the general population[J]. Eur Heart J Cardiovasc Imaging, 2024, 25(3): 396-403. DOI: 10.1093/ehjci/jead281.
[28]
BARRETT C M, BAWASKAR P, HUGHES A, et al. Right ventricular function on cardiovascular magnetic resonance imaging and long-term outcomes in stable heart transplant recipients[J/OL]. Circ Cardiovasc Imaging, 2024, 17(4): e016415 [2025-01-25]. https://pubmed.ncbi.nlm.nih.gov/38563143/. DOI: 10.1161/CIRCIMAGING.123.016415.
[29]
WEN X L, GAO Y, GUO Y K, et al. Assessing right ventricular peak strain in myocardial infarction patients with mitral regurgitation by cardiac magnetic resonance feature tracking[J]. Quant Imaging Med Surg, 2024, 14(4): 3018-3032. DOI: 10.21037/qims-23-1360.
[30]
YAMAGUCHI S, HARASAWA H, LI K S, et al. Comparative significance in systolic ventricular interaction[J]. Cardiovasc Res, 1991, 25(9): 774-783. DOI: 10.1093/cvr/25.9.774.
[31]
TRIPOSKIADIS F, XANTHOPOULOS A, BOUDOULAS K D, et al. The interventricular septum: structure, function, dysfunction, and diseases[J/OL]. J Clin Med, 2022, 11(11): 3227 [2025-01-25]. https://pubmed.ncbi.nlm.nih.gov/35683618/. DOI: 10.3390/jcm11113227.

PREV Diagnostic value of cardiac magnetic resonance feature tracking technique in non-dilated left ventricular cardiomyopathy
NEXT Value of dynamic contrast-enhanced magnetic resonance imaging combined with intratumoral peritumoral radiomics in predicting benign and malignant non-mass enhanced breast lesions
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn