Share:
Share this content in WeChat
X
Case Report
Combined multi-b-value DWI and DCE distributed parameter model in diagnosing radiation necrosis: One case report
LEI Yan  ZHOU Jianan  ZHU Zhengyang  ZHANG Xin  ZHANG Bing 

Cite this article as: LEI Y, ZHOU J N, ZHU Z Y, et al. Combined multi-b-value DWI and DCE distributed parameter model in diagnosing radiation necrosis: One case report[J]. Chin J Magn Reson Imaging, 2025, 16(5): 181-183, 234 DOI:10.12015/issn.1674-8034.2025.05.027.


[Keywords] glioblastoma;dynamic contrast-enhanced imaging;multi-b value diffusion-weighted imaging;magnetic resonance imaging;concurrent chemoradiotherapy;radiation necrosis;tumor recurrence

LEI Yan1, 2, 3   ZHOU Jianan2, 3, 4   ZHU Zhengyang1, 2, 3   ZHANG Xin1, 2, 3, 4*   ZHANG Bing1, 2, 3, 4  

1 Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China

2 Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing 210008, China

3 Medical Imaging Center, Nanjing Drum Tower Hospital, Affiliated of Medical School of Nanjing University, Nanjing 210008, China

4 Department of Medical Imaging, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China

Corresponding author: ZHANG X, E-mail: zhangxin@njglyy.com

Conflicts of interest   None.

Received  2024-11-11
Accepted  2025-05-10
DOI: 10.12015/issn.1674-8034.2025.05.027
Cite this article as: LEI Y, ZHOU J N, ZHU Z Y, et al. Combined multi-b-value DWI and DCE distributed parameter model in diagnosing radiation necrosis: One case report[J]. Chin J Magn Reson Imaging, 2025, 16(5): 181-183, 234 DOI:10.12015/issn.1674-8034.2025.05.027.

[1]
ZOTEVA V, DE MEULENAERE V, VANHOVE C, et al. Integrating and optimizing tonabersat in standard glioblastoma therapy: A preclinical study[J]. PLoS One, 2024, 19(3): 21 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/38489314/. DOI: 10.1371/journal.pone.0300552.
[2]
WARE T M B, LUWOR R B, ZHU H J. A New Systemic Disease Mouse Model for Glioblastoma Capable of Single-Tumour-Cell Detection[J/OL]. Cells, 2024, 13(2): 192 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/38275817/. DOI: 10.3390/cells13020192.
[3]
KARVE A S, DESAI J M, GADGIL S N, et al. A Review of Approaches to Potentiate the Activity of Temozolomide against Glioblastoma to Overcome Resistance[J/OL]. Int J Mol Sci, 2024, 25(6): 21 [2024-10-28]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10970334/. DOI: 10.3390/ijms25063217.
[4]
ZIKOU A, SIOKA C, ALEXIOU G A, et al. Radiation Necrosis, Pseudoprogression, Pseudoresponse, and Tumor Recurrence: Imaging Challenges for the Evaluation of Treated Gliomas[J/OL]. Contrast Media & Molecular Imaging, 2018, 2018: 6828396 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/30627060/. DOI: 10.1155/2018/6828396.
[5]
LE FEVRE C, CONSTANS J M, CHAMBRELANT I, et al. Pseudoprogression versus true progression in glioblastoma patients: A multiapproach literature review. Part 2-Radiological features and metric markers[J/OL]. Crit Rev Oncol/Hematol, 2021, 159: 20 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/33515701/. DOI: 10.1016/j.critrevonc.2021.103230.
[6]
ZHU Z Y, HAN X W, YE M P, et al. Progress of MRI in differentiating treatment-related changes and recurrence of glioblastoma[J]. Chin J Magn Reson Imaging, 2023, 14(4): 147-153. DOI: 10.12015/issn.1674-8034.2023.04.026.
[7]
HU L B, HONG N, ZHU W Z. Quantitative Measurement of Cerebral Perfusion with Intravoxel Incoherent Motion in Acute Ischemia Stroke: Initial Clinical Experience[J]. Chin Med J, 2015, 128(19): 2565-2569. DOI: 10.4103/0366-6999.166033.
[8]
HAO F L, WU H, NIU G M. The application of mono-exponential model, bi-exponential model and stretched-exponential model DWI for preoperative grading of gliomas[J]. Chin J Magn Reson Imaging, 2019, 10(6): 401-405. DOI: 10.12015/issn.1674-8034.2019.06.001.
[9]
LIAO D, LIU Y C, LIU J Y, et al. Differentiating tumour progression from pseudoprogression in glioblastoma patients: a monoexponential, biexponential, and stretched-exponential model-based DWI study[J/OL]. BMC Med Imaging, 2023, 23(1): 119 [2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/37697237/. DOI: 10.1186/s12880-023-01082-7.
[10]
FAHLSTROM M, FRANSSON S, BLOMQUIST E, et al. Dynamic contrast-enhanced magnetic resonance imaging may act as a biomarker for vascular damage in normal appearing brain tissue after radiotherapy in patients with glioblastoma[J/OL]. Acta Radiol Open, 2018, 7(11): 2058460118808811 [2024-10-28]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6236579/. DOI: 10.1177/2058460118808811.
[11]
WANG X, LIN W X, MAO Y T, et al. A Comparative Study of Two-Compartment Exchange Models for Dynamic Contrast-Enhanced MRI in Characterizing Uterine Cervical Carcinoma[J/OL]. Contrast Media Mol Imaging, 2019, 2019: 13 [2024-10-28]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6925719/. DOI: 10.1155/2019/3168416.
[12]
GORDON Y, PARTOVI S, MULLER-ESCHNER M, et al. Dynamic contrast-enhanced magnetic resonance imaging: fundamentals and application to the evaluation of the peripheral perfusion[J]. Cardiovasc Diagn Ther, 2014, 4(2): 147-164. DOI: 10.3978/j.issn.2223-3652.2014.03.01.
[13]
WANG R X, CHEN S, HUANG L, et al. Monitoring Serum VEGF in Neoadjuvant Chemotherapy for Patients with Triple-Negative Breast Cancer: A New Strategy for Early Prediction of Treatment Response and Patient Survival[J]. Oncologist, 2019, 24(6): 753-761. DOI: 10.1634/theoncologist.2017-0602.
[14]
GAO A X, WANG H X, ZHANG X Y, et al. Applying dynamic contrast-enhanced MRI tracer kinetic models to differentiate benign and malignant soft tissue tumors[J/OL]. Cancer Imaging, 2024, 24(1): 9 [2024-10-28]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11107050/. DOI: 10.1186/s40644-024-00710-x.
[15]
THOMAS A A, AREVALO-PEREZ J, KALEY T, et al. Dynamic contrast enhanced T1 MRI perfusion differentiates pseudoprogression from recurrent glioblastoma[J]. J Neurooncol, 2015, 125(1): 183-190. DOI: 10.1007/s11060-015-1893-z.
[16]
HENRIKSEN O M, ALVAREZ-TORRES M D, FIGUEIREDO P, et al. High-Grade Glioma Treatment Response Monitoring Biomarkers: A Position Statement on the Evidence Supporting the Use of Advanced MRI Techniques in the Clinic, and the Latest Bench-to-Bedside Developments. Part 1: Perfusion and Diffusion Techniques[J/OL]. Front Oncol, 2022, 12: 27 [2024-10-28]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8961422/. DOI: 10.3389/fonc.2022.810263.

PREV Identification of type Luminal and non-type Luminal breast cancers based on multiparametric MR habitat imaging
NEXT Deep learning-based multimodal magnetic resonance imaging techniques and their research progress in depression diagnosis and treatment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn