Share:
Share this content in WeChat
X
Review
Research advances in multiparametric CMR assessment of myocardial injury in patients with cirrhotic cardiomyopathy
JIANG Linlan  XIE Mingguo  FU Bin  TANG Sishi  YANG Zhi  SU Chunyan 

Cite this article as: JIANG L L, XIE M G, FU B, et al. Research advances in multiparametric CMR assessment of myocardial injury in patients with cirrhotic cardiomyopathy[J]. Chin J Magn Reson Imaging, 2025, 16(5): 210-216. DOI:10.12015/issn.1674-8034.2025.05.032.


[Abstract] Cirrhotic cardiomyopathy (CCM) refers to a type of cardiomyopathy characterized by systolic and/or diastolic dysfunction and electrophysiological abnormalities in patients with cirrhosis, excluding other preexisting heart diseases. Due to the difficulty of early diagnosis and the limitations of traditional imaging methods, which may fail to detect early diastolic dysfunction, myocardial fibrosis, and microstructural changes, cardiac magnetic resonance (CMR) has increasingly been applied in the diagnosis and evaluation of CCM. CMR is a noninvasive, high-resolution technique capable of quantitatively assessing cardiac structure and function. This article summarizes the advancements in the application of CMR in CCM, highlighting its advantages in evaluating myocardial function, structure, and fibrosis. Additionally, it discusses the challenges faced by current research and future research directions, aiming to enhance clinicians' understanding and diagnosis of CCM and ultimately improve the quality of life and prognosis of CCM patients.
[Keywords] cirrhosis;cirrhotic cardiomyopathy;cardiac magnetic resonance;left ventricular function;cardiomyopathy

JIANG Linlan1   XIE Mingguo2*   FU Bin3   TANG Sishi3   YANG Zhi3   SU Chunyan3  

1 School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China

2 Department of Radiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China

3 Department of Radiology, Chengdu Fifth People's Hospital, Chengdu 611130, China

Corresponding author: XIE M G, E-mail: 767030837@qq.com

Conflicts of interest   None.

Received  2025-03-28
Accepted  2025-05-10
DOI: 10.12015/issn.1674-8034.2025.05.032
Cite this article as: JIANG L L, XIE M G, FU B, et al. Research advances in multiparametric CMR assessment of myocardial injury in patients with cirrhotic cardiomyopathy[J]. Chin J Magn Reson Imaging, 2025, 16(5): 210-216. DOI:10.12015/issn.1674-8034.2025.05.032.

[1]
RYU D G, YU F X, YOON K T, et al. The cardiomyocyte in cirrhosis: pathogenic mechanisms underlying cirrhotic cardiomyopathy[J/OL]. Rev Cardiovasc Med, 2024, 25(12): 457 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/39742234/. DOI: 10.31083/j.rcm2512457.
[2]
NDAKOTSU A, NDUKA T C, AGRAWAL S, et al. Cirrhotic cardiomyopathy: comprehensive insights into pathophysiology, diagnosis, and management[J/OL]. Heart Fail Rev, 2025 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/40069401/. DOI: 10.1007/s10741-025-10500-7.
[3]
KAUR H, PREMKUMAR M. Diagnosis and management of cirrhotic cardiomyopathy[J]. J Clin Exp Hepatol, 2022, 12(1): 186-199. DOI: 10.1016/j.jceh.2021.08.016.
[4]
DASH S C, RAJESH B, BEHERA S K, et al. Is cirrhotic cardiomyopathy related to cirrhosis severity?[J/OL]. Rambam Maimonides Med J, 2023, 14(1): e0001 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/36719669/. DOI: 10.5041/RMMJ.10488.
[5]
SCARLATESCU E, MARCHENKO S P, TOMESCU D R. Cirrhotic cardiomyopathy-a veiled threat[J]. Cardiol Rev, 2022, 30(2): 80-89. DOI: 10.1097/CRD.0000000000000377.
[6]
DIMITROGLOU Y, AGGELI C, ALEXOPOULOU A, et al. The contemporary role of speckle tracking echocardiography in cirrhotic cardiomyopathy[J/OL]. Life (Basel), 2024, 14(2): 179 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/38398688/. DOI: 10.3390/life14020179.
[7]
WIESE S, HOVE J D, MØLLER S. Cardiac imaging in patients with chronic liver disease[J]. Clin Physiol Funct Imaging, 2017, 37(4): 347-356. DOI: 10.1111/cpf.12311.
[8]
DESAI M S. Mechanistic insights into the pathophysiology of cirrhotic cardiomyopathy[J/OL]. Anal Biochem, 2022, 636: 114388 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/34587512/. DOI: 10.1016/j.ab.2021.114388.
[9]
KALLURU R, GADDE S, CHIKATIMALLA R, et al. Cirrhotic cardiomyopathy: the interplay between liver and heart[J/OL]. Cureus, 2022, 14(8): e27969 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/36120195/. DOI: 10.7759/cureus.27969.
[10]
LIU H Q, NASER J A, LIN G, et al. Cardiomyopathy in cirrhosis: From pathophysiology to clinical care[J/OL]. JHEP Rep, 2023, 6(1): 100911 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/38089549/. DOI: 10.1016/j.jhepr.2023.100911.
[11]
ISMAIL T F, STRUGNELL W, COLETTI C, et al. Cardiac MR: from theory to practice[J/OL]. Front Cardiovasc Med, 2022, 9: 826283 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/35310962/. DOI: 10.3389/fcvm.2022.826283.
[12]
YANG C X, ZHANG H B, HUANG G Q, et al. Speckle tracking echocardiography in evaluation of left ventricular dysfunction and its relation with RPR, APRI in cirrhotic patients[J]. Zhejiang Med J, 2021, 43(5): 502-506. DOI: 10.12056/j.issn.1006-2785.2021.43.5.2019-2852.
[13]
JIA Y, LIU L D, ZHOU Y H, et al. Prognostic implications of cardiac geometry in cirrhosis: findings from a large cohort[J/OL]. Liver Int, 2025, 45(2): e16230 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/39752186/. DOI: 10.1111/liv.16230.
[14]
WIESE S, HOVE J D, MO S, et al. Cardiac dysfunction in cirrhosis: a 2-yr longitudinal follow-up study using advanced cardiac imaging[J/OL]. Am J Physiol Gastrointest Liver Physiol, 2019, 317(3): G253-G263 [2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/31216181/. DOI: 10.1152/ajpgi.00402.2018.
[15]
EDIN C, EKSTEDT M, KARLSSON M, et al. Liver fibrosis is associated with left ventricular remodeling: insight into the liver-heart axis[J]. Eur Radiol, 2024, 34(11): 7492-7502. DOI: 10.1007/s00330-024-10798-1.
[16]
BRADLEY C R, COX E F, SCOTT R A, et al. Multi-organ assessment of compensated cirrhosis patients using quantitative magnetic resonance imaging[J]. J Hepatol, 2018, 69(5): 1015-1024. DOI: 10.1016/j.jhep.2018.05.037.
[17]
ZHANG Y J. Evaluation of Left Ventricular Function and circRNA Regulation in Patients with Cirrhotic Cardiomyopathy Before and After Liver Transplantation[D]. Qingdao University, 2023. DOI: 10.27262/d.cnki.gqdau.2023.003058.
[18]
CHEN Y, CHEN X L, CAO L L, et al. Cardiac structural and functional changes in patients with hepatitis B cirrhosis after undergoing transjugular intrahepatic portosystemic shunt[J]. J Pract Hepatol, 2023, 26(1): 79-82. DOI: 10.3969/j.issn.1672-5069.2023.01.021.
[19]
CHEN Y, CHAN A C, CHAN S C, et al. A detailed evaluation of cardiac function in cirrhotic patients and its alteration with or without liver transplantation[J]. J Cardiol, 2016, 67(2): 140-146. DOI: 10.1016/j.jjcc.2015.08.001.
[20]
LUPU D, NEDELCU L, ȚÎNȚ D. The interplay between severe cirrhosis and heart: a focus on diastolic dysfunction[J/OL]. J Clin Med, 2024, 13(18): 5442 [2025-03-27]. https://pubmed.ncbi.nlm.nih.gov/39336928/. DOI: 10.3390/jcm13185442.
[21]
ZHANG L, LI Y, WANG Q Q, et al. Advances in research on the effects of liver cirrhosis on cardiovascular system and related mechanisms[J]. J Kunming Med Univ, 2024, 45(6): 1-6. DOI: 10.12259/j.issn.2095-610X.S20240601.
[22]
SHAHVARAN S A, MENYHÁRT O, CSEDRIK L, et al. Diagnosis and prevalence of cirrhotic cardiomyopathy: a systematic review and meta-analysis[J/OL]. Curr Probl Cardiol, 2021, 46(10): 100821 [2025-03-27]. https://pubmed.ncbi.nlm.nih.gov/34016482/. DOI: 10.1016/j.cpcardiol.2021.100821.
[23]
KWAN A C, SUN N, DRIVER M, et al. Cardiovascular and hepatic disease associations by magnetic resonance imaging: a retrospective cohort study[J/OL]. Front Cardiovasc Med, 2022, 9: 1009474 [2025-03-27]. https://pubmed.ncbi.nlm.nih.gov/36324754/. DOI: 10.3389/fcvm.2022.1009474.
[24]
SOLANKI R, SREESH S, ATTUMALIL T V, et al. A case-cohort study of left ventricular diastolic dysfunction in patients with cirrhosis: the liver-heart axis[J]. Ann Gastroenterol, 2023, 36(6): 678-685. DOI: 10.20524/aog.2023.0837.
[25]
VOET F, KHALENKOW M, DE PAUW M, et al. Diastolic dysfunction: Prevalence and outcome in liver transplantation candidates[J/OL]. Ann Hepatol, 2025, 30(2): 101784 [2025-03-27]. https://pubmed.ncbi.nlm.nih.gov/39947466/. DOI: 10.1016/j.aohep.2025.101784.
[26]
BI S H. The Predictive Value of Cardiac Diastolic Dysfunction in Patients with Cirrhosis for Post-Liver Transplantation Outcomes[D]. Qingdao University, 2023. DOI: 10.27262/d.cnki.gqdau.2023.001278.
[27]
WALLIHAN D B, PODBERESKY D J, MARINO B S, et al. Relationship of MR elastography determined liver stiffness with cardiac function after Fontan palliation[J]. J Magn Reson Imaging, 2014, 40(6): 1328-1335. DOI: 10.1002/jmri.24496.
[28]
ROTHENBERGER S M, PATEL N M, ZHANG J C, et al. Automatic 4D flow MRI segmentation using the standardized difference of means velocity[J]. IEEE Trans Med Imaging, 2023, 42(8): 2360-2373. DOI: 10.1109/TMI.2023.3251734.
[29]
LAMY J, XIANG J, SHAH N, et al. Diastolic dysfunction evaluation by cardiovascular magnetic resonance derived E, a, E': Comparison to echocardiography[J/OL]. Physiol Rep, 2024, 12(23): e70078 [2025-03-27]. https://pubmed.ncbi.nlm.nih.gov/39604208/. DOI: 10.14814/phy2.70078.
[30]
ZHANG J M, CHEN J, CHEONG B, et al. High frame rate cardiac cine MRI for the evaluation of diastolic function and its direct correlation with echocardiography[J]. J Magn Reson Imaging, 2019, 50(5): 1571-1582. DOI: 10.1002/jmri.26791.
[31]
CHEN X R, PAN J F, HU H J, et al. Research progress of myocardial strain based on cardiac magnetic resonance feature tracking technology[J]. J Electrocardiol Circ, 2022, 41(3): 303-306, 308. DOI: 10.12124/j.issn.2095-3933.2022.3.2021-4792.
[32]
RAZPOTNIK M, BOTA S, WIMMER P, et al. Development of liver-heart score for early detection of myocardial contractile dysfunction in cirrhosis by strain imaging[J/OL]. Liver Int, 2025, 45(4): e70062 [2025-03-27]. https://pubmed.ncbi.nlm.nih.gov/40105366/. DOI: 10.1111/liv.70062.
[33]
ALI S A, ARMAN H E, SHAMSEDDEEN H, et al. Cirrhotic cardiomyopathy: Predictors of major adverse cardiac events and assessment of reversibility after liver transplant[J]. J Cardiol, 2023, 82(2): 113-121. DOI: 10.1016/j.jjcc.2023.04.007.
[34]
SAMPAIO F, LAMATA P, BETTENCOURT N, et al. Assessment of cardiovascular physiology using dobutamine stress cardiovascular magnetic resonance reveals impaired contractile reserve in patients with cirrhotic cardiomyopathy[J/OL]. J Cardiovasc Magn Reson, 2015, 17(1): 61 [2025-03-27]. https://pubmed.ncbi.nlm.nih.gov/26187817/. DOI: 10.1186/s12968-015-0157-6.
[35]
RIDJAB D A, IVAN I, BUDIMAN F, et al. Evaluation of subclinical ventricular systolic dysfunction assessed using global longitudinal strain in liver cirrhosis: a systematic review, meta-analysis, and meta-regression[J/OL]. PLoS One, 2022, 17(6): e0269691 [2025-03-27]. https://pubmed.ncbi.nlm.nih.gov/35671306/. DOI: 10.1371/journal.pone.0269691.
[36]
SKOULOUDI M, BONOU M S, ADAMANTOU M, et al. Left atrial strain and ventricular global longitudinal strain in cirrhotic patients using the new criteria of Cirrhotic Cardiomyopathy Consortium[J]. Liver Int, 2023, 43(12): 2727-2742. DOI: 10.1111/liv.15714.
[37]
POOJARY M S, SAMANTH J, NAYAK K, et al. Evaluation of subclinical left ventricular systolic dysfunction using two-dimensional speckle-tracking echocardiography in patients with Child-Pugh A and B cirrhosis: a case-control study[J]. Indian J Gastroenterol, 2022, 41(6): 567-575. DOI: 10.1007/s12664-022-01277-w.
[38]
KIM H M, KIM H K, LEE J H, et al. Myocardial structural and functional changes in patients with liver cirrhosis awaiting liver transplantation: a comprehensive cardiovascular magnetic resonance and echocardiographic study[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 25 [2025-03-27]. https://pubmed.ncbi.nlm.nih.gov/32321533/. DOI: 10.1186/s12968-020-00622-2.
[39]
LOSSNITZER D, STEEN H, ZAHN A, et al. Myocardial late gadolinium enhancement cardiovascular magnetic resonance in patients with cirrhosis[J/OL]. J Cardiovasc Magn Reson, 2010, 12(1): 47 [2025-03-27]. https://pubmed.ncbi.nlm.nih.gov/20704762/. DOI: 10.1186/1532-429X-12-47.
[40]
ISAAK A, PRAKTIKNJO M, JANSEN C, et al. Myocardial fibrosis and inflammation in liver cirrhosis: MRI study of the liver-heart axis[J]. Radiology, 2020, 297(1): 51-61. DOI: 10.1148/radiol.2020201057.
[41]
INNOCENZI A, RANGEL I, PÓVOA-CORRÊA M, et al. Cardiac and liver fibrosis assessed by multiparametric MRI in patients with fontan circulation[J]. Pediatr Cardiol, 2025, 46(4): 966-975. DOI: 10.1007/s00246-024-03522-9.
[42]
WANG J Q, DIAO Y K, XU Y W, et al. Liver T1 mapping derived from cardiac magnetic resonance imaging: a potential prognostic marker in idiopathic dilated cardiomyopathy[J]. J Magn Reson Imaging, 2024, 60(2): 675-685. DOI: 10.1002/jmri.29223.
[43]
TERZI F V O, CAMARGO G C, PARENTE D B, et al. How cardiac fibrosis assessed via T1 mapping is associated with liver fibrosis in patients with non-alcoholic fatty liver disease[J/OL]. J Clin Med, 2023, 12(23): 7381 [2025-03-27]. https://pubmed.ncbi.nlm.nih.gov/38068433/. DOI: 10.3390/jcm12237381.
[44]
WIESE S, VOIOSU A, HOVE J D, et al. Fibrogenesis and inflammation contribute to the pathogenesis of cirrhotic cardiomyopathy[J]. Aliment Pharmacol Ther, 2020, 52(2): 340-350. DOI: 10.1111/apt.15812.
[45]
WIESE S, HOVE J, MO S, et al. Myocardial extracellular volume quantified by magnetic resonance is increased in cirrhosis and related to poor outcome[J]. Liver Int, 2018, 38(9): 1614-1623. DOI: 10.1111/liv.13870.
[46]
LEE Y B, LEE J H. Cirrhotic cardiomyopathy: an independent prognostic factor for cirrhotic patients[J]. Clin Mol Hepatol, 2018, 24(4): 372-373. DOI: 10.3350/cmh.2018.0098.
[47]
YANG J C, REN G M, WANG H M, et al. Study of relationship between cardiac magnetic resonance late gadolinium enhancement and histological myocardial fibrosis based on the transplanted heart specimen[J]. J Clin Radiol, 2023, 42(12): 1900-1906. DOI: 10.13437/j.cnki.jcr.2023.12.029.
[48]
LI D D, WANG Q, XU J, et al. Progress of T1 mapping and its application in evaluating myocardial fibrosis[J]. Chin J Med Imag, 2024, 32(9): 966-971. DOI: 10.3969/j.issn.1005-5185.2024.09.019.
[49]
FOTAKI A, VELASCO C, PRIETO C, et al. Quantitative MRI in cardiometabolic disease: from conventional cardiac and liver tissue mapping techniques to multi-parametric approaches[J/OL]. Front Cardiovasc Med, 2023, 9: 991383 [2025-03-27]. https://pubmed.ncbi.nlm.nih.gov/36756640/. DOI: 10.3389/fcvm.2022.991383.
[50]
KWAN A C, WEI J, LEE B P, et al. Subclinical hepatic fibrosis is associated with coronary microvascular dysfunction by myocardial perfusion reserve index: a retrospective cohort study[J]. Int J Cardiovasc Imaging, 2022, 38(7): 1579-1586. DOI: 10.1007/s10554-022-02546-7.
[51]
FERREIRA V M, PIECHNIK S K. CMR parametric mapping as a tool for myocardial tissue characterization[J]. Korean Circ J, 2020, 50(8): 658-676. DOI: 10.4070/kcj.2020.0157.
[52]
BRENDEL J M, KRATZENSTEIN A, BERGER J, et al. T2* map at cardiac MRI reveals incidental hepatic and cardiac iron overload[J]. Diagn Interv Imaging, 2023, 104(11): 552-559. DOI: 10.1016/j.diii.2023.07.005.
[53]
CANCADO R, WATMAN N P, LOBO C, et al. Assessment of liver and cardiac iron overload using MRI in patients with chronic anemias in Latin American countries: results from ASIMILA study[J]. Hematology, 2018, 23(9): 676-682. DOI: 10.1080/10245332.2018.1461292.
[54]
JIN M L, JIANG Y, ZHAO Q, et al. Diagnostic value of T2 relaxation time for hepatic iron grading in rat model of fatty and fibrotic liver[J/OL]. PLoS One, 2022, 17(12): e0278574 [2025-03-27]. https://pubmed.ncbi.nlm.nih.gov/36469532/. DOI: 10.1371/journal.pone.0278574.

PREV Recent advances in MRI for risk prediction of carotid atherosclerotic stroke
NEXT Advances in histology and imaging studies of vascular encroachment of tumor clusters in hepatocellular carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn