Share:
Share this content in WeChat
X
Review
Progress of amide proton transfer imaging in endometrial cancer
ZENG Yingting  NING Qingling  FANG Bin  ZHONG Jianping  ZHONG Junyuan 

Cite this article as: ZENG Y T, NING Q L, FANG Bin, et al. Progress of amide proton transfer imaging in endometrial cancer[J]. Chin J Magn Reson Imaging, 2025, 16(5): 223-228. DOI:10.12015/issn.1674-8034.2025.05.034.


[Abstract] Amide proton transfer (APT) imaging is a novel chemical exchange saturation transfer technique that measures the exchange rate between amide protons of endogenous proteins or peptides and water protons in tissues, reflecting changes in protein concentration and the microenvironment. Endometrial carcinoma (EC) is a common malignant tumor of the female genital tract, with an incidence that is increasing year by year and becoming younger. Currently, APT imaging plays an important role in the differential diagnosis, pathological characteristics evaluation, immunohistochemical markers and molecular pathological expression prediction of endometrial cancer. However, most of the relevant studies have limited sample sizes, and the limitations of APT imaging technology and data processing affect the accuracy of the results. In the future, the implementation of multi-center large sample studies, combined with molecular subtypes, tumor genomics and multimodal imaging technology, and the improvement of image quality and standardization of data processing, will promote the development of precision diagnosis and treatment. This article reviews the technical principles of APT and its research in endometrial cancer. It is expected to help radiologists to have a more comprehensive understanding of the APT imaging manifestations and application prospects of endometrial cancer, and to provide objective information for clinical personalized diagnosis and treatment.
[Keywords] endometrial carcinoma;lymphovascular space invasion;magnetic resonance imaging;amide proton transfer imaging;histological grading;immunohistochemistry

ZENG Yingting   NING Qingling   FANG Bin   ZHONG Jianping   ZHONG Junyuan*  

Department of Radiology, Ganzhou People's Hospital, Ganzhou 341000, China

Corresponding author: ZHONG J Y, E-mail: JunyuanZhong@126.com

Conflicts of interest   None.

Received  2025-01-07
Accepted  2025-05-08
DOI: 10.12015/issn.1674-8034.2025.05.034
Cite this article as: ZENG Y T, NING Q L, FANG Bin, et al. Progress of amide proton transfer imaging in endometrial cancer[J]. Chin J Magn Reson Imaging, 2025, 16(5): 223-228. DOI:10.12015/issn.1674-8034.2025.05.034.

[1]
SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024[J]. CA A Cancer J Clin, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
[2]
BEREK J S, MATIAS-GUIU X, CREUTZBERG C, et al. FIGO staging of endometrial cancer: 2023[J/OL]. J Gynecol Oncol, 2023, 34(5): e85 [2025-03-17]. https://obgyn.onlinelibrary.wiley.com/doi/full/10.1002/ijgo.14923. DOI: 10.3802/jgo.2023.34.e85.
[3]
RESTAINO S, PAGLIETTI C, ARCIERI M, et al. Management of patients diagnosed with endometrial cancer: comparison of guidelines[J/OL]. Cancers (Basel), 2023, 15(4): 1091 [2025-01-15]. https://www.mdpi.com/2072-6694/15/4/1091. DOI: 10.3390/cancers15041091.
[4]
ZHANG L, LIU L. Evaluation of multi-parameter MRI in preoperative staging of endometrial carcinoma[J/OL]. Eur J Radiol Open, 2024, 12: 100559 [2025-01-07]. https://www.sciencedirect.com/science/article/pii/S2352047724000145. DOI: 10.1016/j.ejro.2024.100559.
[5]
ZHOU J Y, ZAISS M, KNUTSSON L, et al. Review and consensus recommendations on clinical APT-weighted imaging approaches at 3T: Application to brain tumors[J]. Magn Reson Med, 2022, 88(2): 546-574. DOI: 10.1002/mrm.29241.
[6]
SUN C, ZHAO Y, ZU Z L. Validation of the presence of fast exchanging amine CEST effect at low saturation powers and its influence on the quantification of APT[J]. Magn Reson Med, 2023, 90(4): 1502-1517. DOI: 10.1002/mrm.29742.
[7]
DE ALMEIDA G B, PASCUZZO R, MAMBRIN F, et al. The role of amide proton transfer (APT)-weighted imaging in glioma: assessment of tumor grading, molecular profile and survival in different tumor components[J/OL]. Cancers (Basel), 2024, 16(17): 3014 [2025-01-15]. https://www.mdpi.com/2072-6694/16/17/3014. DOI: 10.3390/cancers16173014.
[8]
XIANG Y, ZHANG Q J, CHEN X, et al. Synthetic MRI and amide proton transfer-weighted MRI for differentiating between benign and malignant sinonasal lesions[J]. Eur Radiol, 2024, 34(10): 6820-6830. DOI: 10.1007/s00330-024-10696-6.
[9]
SHAN H, KE T, BAO S, et al. Evaluation of functional magnetic resonance APT and DKI imaging for breast cancer[J/OL]. Cancer Cell Int, 2024, 24(1): 401 [2025-01-15]. https://link.springer.com/article/10.1186/s12935-024-03587-9. DOI: 10.1186/s12935-024-03587-9.
[10]
OHNO Y, YUI M, YAMAMOTO K, et al. Chemical exchange saturation transfer MRI: capability for predicting therapeutic effect of chemoradiotherapy on non-small cell lung cancer patients[J]. J Magn Reson Imaging, 2023, 58(1): 174-186. DOI: 10.1002/jmri.28691.
[11]
YE Y Q, GONG Z J, SONG Y L, et al. Added value of amide proton transfer-weighted magnetic resonance imaging to Prostate Imaging Reporting and Data System version 2.1 in differentiating clinically significant prostate cancer[J]. Quant Imaging Med Surg, 2024, 14(12): 9036-9048. DOI: 10.21037/qims-24-1121.
[12]
CHEN W C, LIU G Q, CHEN J L, et al. Whole-tumor amide proton transfer-weighted imaging histogram analysis to predict pathological extramural venous invasion in rectal adenocarcinoma: a preliminary study[J]. Eur Radiol, 2023, 33(7): 5159-5171. DOI: 10.1007/s00330-023-09418-1.
[13]
YU Y B, SONG X L, ZENG Z, et al. Amide proton transfer weighted MRI in differential diagnosis of ovarian masses with cystic components: a preliminary study[J]. Magn Reson Imaging, 2023, 103: 216-223. DOI: 10.1016/j.mri.2023.07.014.
[14]
XU C, ZHANG X Y, WU X C, et al. The value of amide proton transfer imaging combined with serum CA125 levels in predicting lymph vascular invasion in cervical cancer before surgery[J]. Acta Radiol, 2024, 65(9): 1039-1045. DOI: 10.1177/02841851241273939.
[15]
ZHANG Q Y, LIU J S, TIAN S F, et al. The value of amide proton transfer weighted combined with dynamic contrast-enhanced MRI in evaluating cervical cancer nerve invasion[J]. Chin J Magn Reson Imag, 2024, 15(8): 39-45. DOI: 10.12015/issn.1674-8034.2024.08.006.
[16]
LI S J, LIU J, ZHANG Z X, et al. Added-value of 3D amide proton transfer MRI in assessing prognostic factors of cervical cancer: a comparative study with multiple model diffusion-weighted imaging[J]. Quant Imaging Med Surg, 2023, 13(12): 8157-8172. DOI: 10.21037/qims-23-324.
[17]
KONG Y Q, QU Q Q, MING L, et al. Research progress of amidine proton transfer imaging in genitourinary system disease[J]. Chin J Magn Reson Imag, 2021, 12(10): 118-120. DOI: 10.12015/issn.1674-8034.2021.10.031.
[18]
LIN Y, LI C M, CHEN M. Application progress of amide proton transfer imaging[J]. Radiol Pract, 2018, 33(5): 525-528. DOI: 10.13609/j.cnki.1000-0313.2018.05.018.
[19]
RAY K J, SIMARD M A, LARKIN J R, et al. Tumor pH and protein concentration contribute to the signal of amide proton transfer magnetic resonance imaging[J]. Cancer Res, 2019, 79(7): 1343-1352. DOI: 10.1158/0008-5472.CAN-18-2168.
[20]
WANG F, XIANG Y S, WU P, et al. Evaluation of amide proton transfer imaging for bladder cancer histopathologic features: A comparative study with diffusion- weighted imaging[J/OL]. Eur J Radiol, 2023, 159: 110664 [2025-01-15]. https://pubmed.ncbi.nlm.nih.gov/36574743/. DOI: 10.1016/j.ejrad.2022.110664.
[21]
SIMEGN G L, SUN P Z, ZHOU J Y, et al. Motion and magnetic field inhomogeneity correction techniques for chemical exchange saturation transfer (CEST) MRI: A contemporary review[J/OL]. NMR Biomed, 2025, 38(1): e5294 [2025-01-15]. https://pubmed.ncbi.nlm.nih.gov/39532518/. DOI: 10.1002/nbm.5294.
[22]
DOBRZYCKA B, TERLIKOWSKA K M, KOWALCZUK O, et al. Prognosis of stage I endometrial cancer according to the FIGO 2023 classification taking into account molecular changes[J/OL]. Cancers (Basel), 2024, 16(2): 390 [2025-01-15]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10813919/. DOI: 10.3390/cancers16020390.
[23]
LI Y, LIN C Y, QI Y F, et al. Non-invasive differentiation of endometrial adenocarcinoma from benign lesions in the uterus by utilization of amide proton transfer-weighted MRI[J]. Mol Imaging Biol, 2021, 23(3): 446-455. DOI: 10.1007/s11307-020-01565-x.
[24]
MA C J, LIU A L, TIAN S F, et al. Preliminary study on the application value of APTw combined with mDixon-quant sequence in differentiating early endometrial carcinoma from endometrial polyp[J]. J Clin Radiol, 2022, 41(2): 372-376. DOI: 10.13437/j.cnki.jcr.2022.02.007.
[25]
TIAN S F, CHEN A L, LI Y, et al. The combined application of amide proton transfer imaging and diffusion kurtosis imaging for differentiating stage Ia endometrial carcinoma and endometrial polyps[J]. Magn Reson Imaging, 2023, 99: 67-72. DOI: 10.1016/j.mri.2022.12.026.
[26]
MENG X, TIAN S F, ZHANG Q H, et al. Improved differentiation between stage Ⅰ-Ⅱ endometrial carcinoma and endometrial polyp with combination of APTw and IVIM MR imaging[J]. Magn Reson Imaging, 2023, 102: 43-48. DOI: 10.1016/j.mri.2023.04.001.
[27]
ZHANG S Y, SUN H Z, LI B B, et al. Variation of amide proton transfer signal intensity and apparent diffusion coefficient values among phases of the menstrual cycle in the normal uterus: A preliminary study[J]. Magn Reson Imaging, 2019, 63: 21-28. DOI: 10.1016/j.mri.2019.07.007.
[28]
TAKAYAMA Y, NISHIE A, TOGAO O, et al. Amide proton transfer MR imaging of endometrioid endometrial adenocarcinoma: association with histologic grade[J]. Radiology, 2018, 286(3): 909-917. DOI: 10.1148/radiol.2017170349.
[29]
FU F F, MENG N, HUANG Z, et al. Identification of histological features of endometrioid adenocarcinoma based on amide proton transfer-weighted imaging and multimodel diffusion-weighted imaging[J]. Quant Imaging Med Surg, 2022, 12(2): 1311-1323. DOI: 10.21037/qims-21-189.
[30]
OCHIAI R, MUKUDA N, YUNAGA H, et al. Amide proton transfer imaging in differentiation of type Ⅱ and type I endometrial carcinoma: A pilot study[J]. Jpn J Radiol, 2022, 40(2): 184-191. DOI: 10.1007/s11604-021-01197-3.
[31]
MENG N, WANG X J, SUN J, et al. Evaluation of amide proton transfer-weighted imaging for endometrial carcinoma histological features: a comparative study with diffusion kurtosis imaging[J]. Eur Radiol, 2021, 31(11): 8388-8398. DOI: 10.1007/s00330-021-07966-y.
[32]
JIN X X, YAN R F, LI Z, et al. Evaluation of amide proton transfer-weighted imaging for risk factors in stage I endometrial cancer: a comparison with diffusion-weighted imaging and diffusion kurtosis imaging[J/OL]. Front Oncol, 2022, 12: 876120 [2025-01-07]. https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.876120/full. DOI: 10.3389/fonc.2022.876120.
[33]
MENG N, FANG T, FENG P Y, et al. Amide proton transfer-weighted imaging and multiple models diffusion-weighted imaging facilitates preoperative risk stratification of early-stage endometrial carcinoma[J]. J Magn Reson Imaging, 2021, 54(4): 1200-1211. DOI: 10.1002/jmri.27684.
[34]
MA C J, LIU A L, TIAN S F, et al. Preliminary study of APT combined with T2 mapping sequence in preoperative risk assessment of endometrial carcinoma[J]. Chin J Magn Reson Imag, 2021, 12(9): 69-72. DOI: 10.12015/issn.1674-8034.2021.09.016.
[35]
RUSCELLI M, MALOBERTI T, CORRADINI A G, et al. Prognostic impact of pathologic features in molecular subgroups of endometrial carcinoma[J/OL]. J Pers Med, 2023, 13(5): 723 [2025-01-07]. https://www.mdpi.com/2075-4426/13/5/723. DOI: 10.3390/jpm13050723.
[36]
YARANDI F, SHIRALI E, AKHAVAN S, et al. The impact of lymphovascular space invasion on survival in early stage low-grade endometrioid endometrial cancer[J/OL]. Eur J Med Res, 2023, 28(1): 118 [2025-01-07]. https://link.springer.com/article/10.1186/s40001-023-01084-9. DOI: 10.1186/s40001-023-01084-9.
[37]
TIAN S F, MENG X, ZHU W, et al. Amide proton transfer weighted and diffusion kurtosis imaging in evaluating lymphovascular space invasion of endometrial carcinoma[J]. Chin J Med Imag, 2023, 31(10): 1085-1089. DOI: 10.3969/j.issn.1005-5185.2023.10.016.
[38]
ABBINK K, ZUSTERZEEL P L M, GEURTS-MOESPOT A, et al. Prognostic significance of VEGF and components of the plasminogen activator system in endometrial cancer[J]. J Cancer Res Clin Oncol, 2020, 146(7): 1725-1735. DOI: 10.1007/s00432-020-03225-7.
[39]
TYMON-ROSARIO J, SIEGEL E R, BELLONE S, et al. Trastuzumab tolerability in the treatment of advanced (stage Ⅲ-Ⅳ) or recurrent uterine serous carcinomas that overexpress HER2/neu[J]. Gynecol Oncol, 2021, 163(1): 93-99. DOI: 10.1016/j.ygyno.2021.07.033.
[40]
MCNAMARA B, GREENMAN M, PEBLEY N, et al. Antibody-drug conjugates (ADC) in HER2/neu-positive gynecologic tumors[J/OL]. Molecules, 2023, 28(21): 7389 [2025-01-07]. https://www.mdpi.com/1420-3049/28/21/7389. DOI: 10.3390/molecules28217389.
[41]
LI X, TIAN S, MA C, et al. Multimodal MRI for estimating her-2 gene expression in endometrial cancer[J/OL]. Bioengineering (Basel), 2023, 10(12): 1399 [2025-01-07]. https://www.mdpi.com/2306-5354/10/12/1399L. DOI: 10.3390/bioengineering10121399.
[42]
TIAN S F, LIU A L, REN X, et al. Evaluation of Her-2 gene expression in endometrial carcinoma by amide proton transfer weighted and fat quantitative[J]. Chin J Magn Reson Imag, 2021, 12(11): 70-73. DOI: 10.12015/issn.1674-8034.2021.11.015.
[43]
GÜLSEREN V, KOCAER M, ÖZDEMIR İ A, et al. Do estrogen, progesterone, P53 and Ki67 receptor ratios determined from curettage materials in endometrioid-type endometrial carcinoma predict lymph node metastasis [J/OL]. Curr Probl Cancer, 2020, 44(1): 100498 [2025-01-07]. https://www.sciencedirect.com/science/article/abs/pii/S0147027219300273. DOI: 10.1016/j.currproblcancer.2019.07.003.
[44]
LI Y, LIN C Y, QI Y F, et al. Three-dimensional turbo-spin-echo amide proton transfer-weighted and intravoxel incoherent motion MR imaging for type I endometrial carcinoma: Correlation with Ki-67 proliferation status[J]. Magn Reson Imaging, 2021, 78: 18-24. DOI: 10.1016/j.mri.2021.02.006.
[45]
EFE G, RUSTGI A K, PRIVES C. p53 at the crossroads of tumor immunity[J]. Nat Cancer, 2024, 5(7): 983-995. DOI: 10.1038/s43018-024-00796-z.
[46]
LEÓN-CASTILLO A, DE BOER S M, POWELL M E, et al. Molecular classification of the PORTEC-3 trial for high-risk endometrial cancer: impact on prognosis and benefit from adjuvant therapy[J]. J Clin Oncol, 2020, 38(29): 3388-3397. DOI: 10.1200/JCO.20.00549.
[47]
TIAN S F, WANG Y, ZHU W, et al. The value of multimodal functional magnetic resonance imaging in differentiating p53abn from p53wt endometrial carcinoma[J]. Acta Radiol, 2023, 64(11): 2948-2956. DOI: 10.1177/02841851231198911.
[48]
MA B B, WANG H. Microsatellite instability and its research progress in endometrial cancer[J]. Oncol Prog, 2019, 17(12): 1385-1388. DOI: 10.11877/j.issn.1672-1535.2019.17.12.06.
[49]
BONNEVILLE R, KROOK M A, KAUTTO E A, et al. Landscape of microsatellite instability across 39 cancer types[J/OL]. JCO Precis Oncol, 2017, 2017: PO.17.00073 [2025-01-07]. https://pubmed.ncbi.nlm.nih.gov/29850653/. DOI: 10.1200/PO.17.00073.
[50]
LI Y, LIU X Y, WANG X Q, et al. Using amide proton transfer-weighted MRI to non-invasively differentiate mismatch repair deficient and proficient tumors in endometrioid endometrial adenocarcinoma[J/OL]. Insights Imaging, 2021, 12(1): 182 [2025-01-07]. https://link.springer.com/article/10.1186/s13244-021-01126-y. DOI: 10.1186/s13244-021-01126-y.
[51]
MA C J, TIAN S F, SONG Q L, et al. Amide proton transfer-weighted imaging combined with intravoxel incoherent motion for evaluating microsatellite instability in endometrial cancer[J]. J Magn Reson Imaging, 2023, 57(2): 493-505. DOI: 10.1002/jmri.28287.
[52]
SHENG L J, YUAN E Y, YUAN F, et al. Amide proton transfer-weighted imaging of the abdomen: Current progress and future directions[J]. Magn Reson Imaging, 2024, 107: 88-99. DOI: 10.1016/j.mri.2024.01.006.

PREV Advances in histology and imaging studies of vascular encroachment of tumor clusters in hepatocellular carcinoma
NEXT Research progress on the application of magnetic resonance spectroscopy in hematological diseases
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn