Share:
Share this content in WeChat
X
Review
Research progress on the application of magnetic resonance spectroscopy in hematological diseases
YAN Hongmin  GAO Mingjie  CHEN Tao  FU Qinghua  ZHANG Niulin  YUE Xinru  REN Xiaoyun  LIU Xu  WANG Jinhuan 

Cite this article as: YAN H M, GAO M J, CHEN T, et al. Research progress on the application of magnetic resonance spectroscopy in hematological diseases[J]. Chin J Magn Reson Imaging, 2025, 16(5): 229-234. DOI:10.12015/issn.1674-8034.2025.05.035.


[Abstract] Hematological diseases are a kind of diseases with abnormal hematopoietic system accompanied by abnormal changes in blood, and most of these diseases have the characteristics of high mortality, and in recent years, their mortality rates have continued to rise. In terms of diagnosis, there is a lack of specific indicators for some hematologic diseases, and the current diagnosis mainly relies on bone marrow biopsy, but this examination is somewhat invasive and has low patient acceptance. And due to the uneven distribution of hematopoietic tissue, the examination results of different puncture sites were quite different. In addition, there is a significant time lag between bone marrow status and peripheral blood manifestations, and many of the above factors have led to great difficulties in diagnosis and many limitations in the process of clinical application. Magnetic resonance spectroscopy (MRS) is a non-invasive detection method that uses magnetic resonance phenomena and chemical shifts, and has significant advantages without damage. Based on the position, intensity, and fine structure of the formants in MRS, the structure and composition of compounds can be qualitatively and quantitatively studied. Due to technical limitations, MRS has not been widely used in clinical practice, and it is expected to become a routine clinical tool in the future with the deepening of research. This article will review the literature to review the research and application progress of MRS in hematological diseases such as leukemia, aplastic anemia (AA), myelodysplastic syndrome (MDS), etc., in order to provide a basis and reference for the diagnosis and treatment of hematologic diseases.
[Keywords] hematological system diseases;leukemia;aplastic anemia;myelodysplastic syndrome;magnetic resonance spectroscopy;magnetic resonance imaging;diagnosis;monitor

YAN Hongmin1   GAO Mingjie1   CHEN Tao1   FU Qinghua1   ZHANG Niulin1   YUE Xinru1   REN Xiaoyun1   LIU Xu1   WANG Jinhuan2*  

1 Graduate School of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China

2 Department of Hematology, the First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China

Corresponding author: WANG J H, E-mail: wjh_0304@163.com

Conflicts of interest   None.

Received  2024-12-18
Accepted  2025-05-07
DOI: 10.12015/issn.1674-8034.2025.05.035
Cite this article as: YAN H M, GAO M J, CHEN T, et al. Research progress on the application of magnetic resonance spectroscopy in hematological diseases[J]. Chin J Magn Reson Imaging, 2025, 16(5): 229-234. DOI:10.12015/issn.1674-8034.2025.05.035.

[1]
KING H L, BENEDETTI G B, KELLER J J, et al. Dermatologic manifestations of hematologic disorders[J]. Ann Hematol, 2024, 103(10): 3889-3903. DOI: 10.1007/s00277-024-05761-5.
[2]
ZHENG S Y, FANG Z H, JIN J, et al. Progress of ferroptosis mechanism and it's application in hematological diseases[J]. Chin J Cell Biol, 2022, 44(6): 1165-1173. DOI: 10.11844/cjcb.2022.06.0022.
[3]
HARTZELL C M, SHAVER A C, MASON E F. Flow cytometric assessment of malignant hematologic disorders[J]. Clin Lab Med, 2024, 44(3): 465-477. DOI: 10.1016/j.cll.2024.04.008.
[4]
LIU M, TANG Y S, XIAO Y L, et al. Diagnostic value of procalcitonin in infections in patients with malignant hematologic diseases[J]. J Cent South Univ Med Sci, 2024, 49(5): 721-729. DOI: 10.11817/j.issn.1672-7347.2024.230589.
[5]
GONG Y Y, LIU S Q. Research progress of bone marrow MRI in hematologic diseases[J]. J Gannan Med Univ, 2023, 43(1): 67-71. DOI: 10.3969/j.issn.1001-5779.2023.01.013.
[6]
PATEL P B, PATEL N, HEDGES M A, et al. Hematologic complications of pregnancy[J]. Eur J Haematol, 2025, 114(4): 596-614. DOI: 10.1111/ejh.14372.
[7]
XIE Y C, XIE H X, ZHANG Z H. The value of morphological examination of abnormal erythrocytes in peripheral blood in diagnosis of hematological diseases[J]. Guide China Med, 2024, 22(2): 61-63. DOI: 10.15912/j.issn.1671-8194.2024.02.018.
[8]
WU Q H, LIN G T. The value of blood smear cell morphology combined with automatic blood cell analyzer in routine blood examination[J]. Chin J Mod Drug Appl, 2024, 18(19): 76-78. DOI: 10.14164/j.cnki.cn11-5581/r.2024.19.019.
[9]
LI X Y. Effect and prognosis evaluation of peripheral blood cell morphology detection in diagnosis of hematological diseases[J]. Smart Healthc, 2023, 9(6): 19-23. DOI: 10.19335/j.cnki.2096-1219.2023.06.005.
[10]
GRIFFITHS J R. Magnetic resonance spectroscopy ex vivo: A short historical review[J/OL]. NMR Biomed, 2023, 36(4): e4740 [2025-04-30]. https://pubmed.ncbi.nlm.nih.gov/35415860/. DOI: 10.1002/nbm.4740.
[11]
YOU Y T, YANG X Z, LI Q Z, et al. Research progress of brain magnetic resonance spectroscopy in patients with chronic pain[J]. Chin J CT MRI, 2024, 22(5): 168-170. DOI: 10.3969/j.issn.1672-5131.2024.05.053.
[12]
KOOLSCHIJN R S, CLARKE W T, IP I B, et al. Event-related functional magnetic resonance spectroscopy[J/OL]. Neuroimage, 2023, 276: 120194 [2025-04-30]. https://pubmed.ncbi.nlm.nih.gov/37244321/. DOI: 10.1016/j.neuroimage.2023.120194.
[13]
ANDESCAVAGE N N, PRADHAN S, GIMOVSKY A C, et al. Magnetic resonance spectroscopy of brain metabolism in fetuses with congenital heart disease[J]. J Am Coll Cardiol, 2023, 82(16): 1614-1623. DOI: 10.1016/j.jacc.2023.08.013.
[14]
RIBAY V, PRAUD C, LETERTRE M P M, et al. Hyperpolarized NMR metabolomics[J]. Curr Opin Chem Biol, 2023, 74: 102307. DOI: 10.1016/j.cbpa.2023.102307.
[15]
THEILLET F X, LUCHINAT E. In-cell NMR: why and how [J]. Prog Nucl Magn Reson Spectrosc, 2022, 132/133: 1-112. DOI: 10.1016/j.pnmrs.2022.04.002.
[16]
FU C H, MAO X W, DAI J, et al. Research on the metabolic characteristic of thalamic region and the efficacy mechanism of acupuncture intervention in migraine without aura based on magnetic resonance spectroscopy imaging[J]. J Liaoning Univ Tradit Chin Med, 2025, 27(2): 119-124. DOI: 10.13194/j.issn.1673-842X.2025.02.021.
[17]
SARLO G L, HOLTON K F. Brain concentrations of glutamate and GABA in human epilepsy: a review[J]. Seizure, 2021, 91: 213-227. DOI: 10.1016/j.seizure.2021.06.028.
[18]
LISERRE R, PINELLI L, GASPAROTTI R. MR spectroscopy in pediatric neuroradiology[J]. Transl Pediatr, 2021, 10(4): 1169-1200. DOI: 10.21037/tp-20-445.
[19]
YAO N, LI W Q, XU G S, et al. Choline metabolism and its implications in cancer[J/OL]. Front Oncol, 2023, 13: 1234887 [2025-04-30]. https://pubmed.ncbi.nlm.nih.gov/38023163/. DOI: 10.3389/fonc.2023.1234887.
[20]
HUANG Z W, JIANG X, XI J H, et al. Diagnostic value analysis of choline levels in hydrogen proton magnetic resonance spectroscopy for benign prostatic hyperplasia combined with overactive bladder[J]. Chin J Hum Sex, 2024, 33(11): 41-45. DOI: 10.3969/j.issn.1672-1993.2024.11.011.
[21]
SHARMA U, JAGANNATHAN N R. Magnetic resonance imaging (MRI) and MR spectroscopic methods in understanding breast cancer biology and metabolism[J/OL]. Metabolites, 2022, 12(4): 295 [2025-04-30]. https://pubmed.ncbi.nlm.nih.gov/35448482/. DOI: 10.3390/metabo12040295.
[22]
TRINDADE I B, COELHO A, CANTINI F, et al. NMR of paramagnetic metalloproteins in solution: Ubi venire, quo vadis [J/OL]. J Inorg Biochem, 2022, 234: 111871 [2025-04-30]. https://pubmed.ncbi.nlm.nih.gov/35636014/. DOI: 10.1016/j.jinorgbio.2022.111871.
[23]
PAYNE T, BURGESS T, BRADLEY S, et al. Multimodal assessment of mitochondrial function in Parkinson's disease[J]. Brain, 2024, 147(1): 267-280. DOI: 10.1093/brain/awad364.
[24]
YU X F, WANG D Y, WEI H F. Application effect of magnetic resonance spectroscopy combined with color Doppler blood flow score in evaluating early breast cancer and tumor staging[J]. Matern Child Health Care China, 2024, 39(5): 943-946. DOI: 10.19829/j.zgfybj.issn.1001-4411.2024.05.044.
[25]
MIKROGEORGIOU A, XU D, FERRIERO D M, et al. Assessing cerebral metabolism in the immature rodent: from extracts to real-time assessments[J]. Dev Neurosci, 2018, 40(5/6): 463-474. DOI: 10.1159/000496921.
[26]
NISHIYAMA Y, HOU G J, AGARWAL V, et al. Ultrafast magic angle spinning solid-state NMR spectroscopy: advances in methodology and applications[J]. Chem Rev, 2023, 123(3): 918-988. DOI: 10.1021/acs.chemrev.2c00197.
[27]
WEINBERG O K, ARBER D A. How I diagnose acute leukemia of ambiguous lineage[J]. Am J Clin Pathol, 2022, 158(1): 27-34. DOI: 10.1093/ajcp/aqac070.
[28]
WHITELEY A E, PRICE T T, CANTELLI G, et al. Leukaemia: a model metastatic disease[J]. Nat Rev Cancer, 2021, 21(7): 461-475. DOI: 10.1038/s41568-021-00355-z.
[29]
WU C L, HUANG Y R, CAI C J. The study of leukaemia serum by 31P nmr[J]. Chin J Magn Reson, 2001, 18(1): 41-44. DOI: 10.3969/j.issn.1000-4556.2001.01.006.
[30]
YIN Y H, SICHLER A, ECKER J, et al. Gut microbiota promote liver regeneration through hepatic membrane phospholipid biosynthesis[J]. J Hepatol, 2023, 78(4): 820-835. DOI: 10.1016/j.jhep.2022.12.028.
[31]
HUANG R Q, SHU R, YAN X Z, et al. Analysis of phosphomonoesters in leukemic cell lines by 31P nuclear magnetic resonance[J]. J Instrum Anal, 2002, 21(4): 5-7. DOI: 10.3969/j.issn.1004-4957.2002.04.002.
[32]
GOMEZ E B, EBATA K, RANDERIA H S, et al. Preclinical characterization of pirtobrutinib, a highly selective, noncovalent (reversible) BTK inhibitor[J]. Blood, 2023, 142(1): 62-72. DOI: 10.1182/blood.2022018674.
[33]
HUANG R Q, DU Z H, YANG Z G, et al. 31P NMR study on the effect of tumor necrosis factor α on leukemia cells[J]. Acta Biochim Biophys Sin, 1996(2): 153-158.
[34]
GADALETA E, THORN G J, ROSS-ADAMS H, et al. Field cancerization in breast cancer[J]. J Pathol, 2022, 257(4): 561-574. DOI: 10.1002/path.5902.
[35]
HUANG R Q, DU Z H, YANG Z G, et al. 31P nuclear magnetic resonance studies of uman lymphoma cell line molt-4[J]. Chin J Magn Reson, 1996, 13(2): 107-112. DOI: 10.1007/BF02943147.
[36]
HUANG R Q, YAN X Z, LUO C H, et al. Study on intracellular pH of HL-60 cells by 31P nuclear magnetic resonance[J]. Chin J Anal Chem, 2003, 31(2): 201-204. DOI: 10.3321/j.issn:0253-3820.2003.02.018.
[37]
SI Y K, SHEN H L, KONG M, et al. The application of -(31)P-NMR spectra to the studies on the metabolism of the differentiated HL-60 cell line[J]. Chin J Biochem Mol Biol, 1996, 12(4): 491-495.
[38]
QIN H T, WENG J, ZHOU B, et al. Magnesium ions promote in vitro rat bone marrow stromal cell angiogenesis through Notch signaling[J]. Biol Trace Elem Res, 2023, 201(6): 2823-2842. DOI: 10.1007/s12011-022-03364-7.
[39]
HU G D, ZHOU H X. Magnesium ions mediate ligand binding and conformational transition of the SAM/SAH riboswitch[J/OL]. Commun Biol, 2023, 6(1): 791 [2025-04-30]. https://pubmed.ncbi.nlm.nih.gov/37524918/. DOI: 10.1038/s42003-023-05175-5.
[40]
SCHUTTEN J C, JORIS P J, GROENDIJK I, et al. Effects of magnesium citrate, magnesium oxide, and magnesium sulfate supplementation on arterial stiffness: a randomized, double-blind, placebo-controlled intervention trial[J/OL]. J Am Heart Assoc, 2022, 11(6): e021783 [2025-04-30]. https://pubmed.ncbi.nlm.nih.gov/35253448/. DOI: 10.1161/JAHA.121.021783.
[41]
HUANG R Q, LUO C H, DU Z H, et al. Determination of intracellular metabolite and cytosolic free magnesium in HL-60 cells by using 31P-nuclear magnetic resonance[J]. Chin J Anal Chem, 2004, 32(2): 129-133. DOI: 10.3321/j.issn:0253-3820.2004.02.001.
[42]
LIU Y L, LI S, WANG J, et al. Preliminary application of 1H NMR spectra on clinical diagnosis[J]. Mod Diagn Treat, 1999, 10(3): 161-162. DOI: 10.3969/j.issn.1001-8174.1999.03.015.
[43]
WANG J S, YU H, MENG X, et al. MRI and MRS analysis of bone marrow infiltration in children with acute leukemia[J]. Guangdong Trace Elem Sci, 2017, 24(1): 42-45. DOI: 10.16755/j.cnki.issn.1006-446x.2017.01.003.
[44]
CAO W G, GAN Y G, ZHAO C L, et al. Analyses of brain in children after chemotherapy with acute lymphoblastic leukemia by using proton magnetic resonance spectroscopy[J]. Chin J CT MRI, 2016, 14(1): 24-26. DOI: 10.3969/j.issn.1672-5131.2016.01.008.
[45]
CANNET C, FRAUENDIENST-EGGER G, FREISINGER P, et al. Ex vivo proton spectroscopy (1 H-NMR) analysis of inborn errors of metabolism: Automatic and computer-assisted analyses[J/OL]. NMR Biomed, 2023, 36(4): e4853 [2025-04-30]. https://pubmed.ncbi.nlm.nih.gov/36264537/. DOI: 10.1002/nbm.4853.
[46]
Red Blood Cell Disease (Anemia) Group of Chinese Society of Hematology of Chinese Medical Association, FU R, LI L J, et al. Guidelines for the diagnosis and management of aplastic Anemia in China (2022)[J]. Chin J Hematol, 2022, 43(11): 881-888. DOI: 10.3760/cma.j.issn.0253-2727.2022.11.001.
[47]
HU Z R, CHEN T, LI Z Y, et al. Advances in the study of diagnostic markers for aplastic Anemia[J]. Hebei Med J, 2024, 46(5): 769-772, 777. DOI: 10.3969/j.issn.1002-7386.2024.05.029.
[48]
CHATZIKALIL E, KATTAMIS A, DIAMANTOPOULOS P, et al. New-onset aplastic anemia after SARS-CoV-2 vaccination[J]. Int J Hematol, 2023, 118(6): 667-681. DOI: 10.1007/s12185-023-03666-z.
[49]
CHEN L Y, LU F H, XIA M Z. The feature of red blood cell (31)P-NMR spectrum of aplastic Anemia ailments[J]. J Fujian Teach Univ Nat Sci, 1997, 13(1): 38-42.
[50]
LU X X, SONG Y R, REN H, et al. Magnetic resonance imaging manifestations and 1H-magnetic resonance spectroscopy features of lumbar bone marrow in patients with aplastic anemia[J]. Guangxi Med J, 2021, 43(1): 43-46, 95. DOI: 10.11675/j.issn.0253-4304.2021.01.11.
[51]
TIAN Y, XU Y P, CUI Y F, et al. Diagnostic value of MRI IDEAL-IQ technique in differentiating aplastic anemia from myelodysplastic syndromes[J]. J Mol Imag, 2025, 48(2): 223-228. DOI: 10.12122/j.issn.1674-4500.2025.02.15.
[52]
OHNO Y, UEDA T, NOMURA M, et al. Proton density fat fraction quantification (PD-FFQ): Capability for hematopoietic ability assessment and aplastic anemaia diagnosis of adults[J/OL]. Magn Reson Imaging, 2024, 114: 110240 [2025-04-30]. https://pubmed.ncbi.nlm.nih.gov/39353515/. DOI: 10.1016/j.mri.2024.110240.
[53]
GAO Y, LUO Y S, TONG K, et al. Peripheral blood cell count and characteristics of dyshaematopoiesis in patients with myelodysplastic syndrome[J]. Int J Lab Med, 2024, 45(18): 2201-2206. DOI: 10.3969/j.issn.1673-4130.2024.18.005.
[54]
HASSERJIAN R P, GERMING U, MALCOVATI L. Diagnosis and classification of myelodysplastic syndromes[J]. Blood, 2023, 142(26): 2247-2257. DOI: 10.1182/blood.2023020078.
[55]
ROTTER L K, SHIMONY S, LING K, et al. Epidemiology and pathogenesis of myelodysplastic syndrome[J]. Cancer J, 2023, 29(3): 111-121. DOI: 10.1097/PPO.0000000000000665.
[56]
CHEN L Y, XIA M Z, LU F H, et al. Study on 31 P NMR spectrum of erythrocyte in patient with MDS[J]. J Instrum Anal, 1997, 16(2): 73-76. DOI: 10.19969/j.fxcsxb.1997.02.018.
[57]
RAJKUMAR S V. Multiple myeloma: 2024 update on diagnosis, risk-stratification, and management[J]. Am J Hematol, 2024, 99(9): 1802-1824. DOI: 10.1002/ajh.27422.
[58]
TEFFERI A, BARBUI T. Polycythemia vera: 2024 update on diagnosis, risk-stratification, and management[J]. Am J Hematol, 2023, 98(9): 1465-1487. DOI: 10.1002/ajh.27002.
[59]
PARUMS D V. A review of IgA vasculitis (henoch-schönlein Purpura) past, present, and future[J/OL]. Med Sci Monit, 2024, 30: e943912 [2025-04-30]. https://pubmed.ncbi.nlm.nih.gov/38281080/. DOI: 10.12659/MSM.943912.

PREV Progress of amide proton transfer imaging in endometrial cancer
NEXT No Records
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn