Share:
Share this content in WeChat
X
Clinlcal Guidelines & Expert Consensu
Chinese expert consensus on cardiac magnetic resonance annotation of hypertrophic cardiomyopathy
Cardiothoracic Committee of Chinese Society of Radiology

Cite this article as: Cardiothoracic Committee of Chinese Society of Radiology. Chinese expert consensus on cardiac magnetic resonance annotation of hypertrophic cardiomyopathy[J]. Chin J Magn Reson Imaging, 2025, 16(6): 1-9. DOI:10.12015/issn.1674-8034.2025.06.001.


[Abstract] Hypertrophic cardiomyopathy (HCM) is a primary myocardial disorder characterized by asymmetric ventricular hypertrophy, particularly involving the interventricular septum. Cardiac magnetic resonance (CMR) imaging has emerged as a cornerstone modality for accurate diagnosis, risk stratification, and therapeutic decision-making in HCM, owing to its unique capabilities in multi-parametric tissue characterization, high spatial resolution, and comprehensive functional assessment. This consensus document establishes standardized protocols encompassing image annotation requirements, methodological approaches, and database construction, based on the characteristic imaging features of HCM. These guidelines aim to facilitate the development of high-quality CMR datasets and advance the application of artificial intelligence technologies in HCM management.
[Keywords] hypertrophic cardiomyopathy;cardiac magnetic resonance;annotation;expert consensus

Cardiothoracic Committee of Chinese Society of Radiology  

Corresponding author: ZHENG M W (Department of Radiology, Xijing Hospital of Air Force Medical University, Xi′an 710032, China), E-mail: zhengmw2007@163.com

Conflicts of interest   None.

Received  2025-04-11
Accepted  2025-06-05
DOI: 10.12015/issn.1674-8034.2025.06.001
Cite this article as: Cardiothoracic Committee of Chinese Society of Radiology. Chinese expert consensus on cardiac magnetic resonance annotation of hypertrophic cardiomyopathy[J]. Chin J Magn Reson Imaging, 2025, 16(6): 1-9. DOI:10.12015/issn.1674-8034.2025.06.001.

[1]
SEMSARIAN C, INGLES J, MARON M S, et al. New perspectives on the prevalence of hypertrophic cardiomyopathy[J]. J Am Coll Cardiol, 2015, 65(12): 1249-1254. DOI: 10.1016/j.jacc.2015.01.019.
[2]
MARON B J, GARDIN J M, FLACK J M, et al. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults[J]. Circulation, 1995, 92(4): 785-789. DOI: 10.1161/01.cir.92.4.785.
[3]
The Joint Committee of Cardiomyopathy Specialty Alliance, National Center for Cardiovascular Diseases/Cardiovascular Precision Medicine Branch of China International Exchange, Promotive Association for Medical, et al. 2023 guideline for diagnosis and treatment of patients with hypertrophic cardiomyopathy[J]. Chin Circ J, 2023, 38(1): 1-33. DOI: 10.1161/01.cir.92.4.785.
[4]
Chinese Medical Association Cardiovascular Branch, Chinese Physician Association Cardiovascular Internal Medicine Branch, Editorial Committee of the Chinese Journal of Cardiovascular Disease. China expert consensus on clinical application of cardiomyopathy magnetic resonance imaging[J]. Zhejiang Med J, 2015, 37(17): 1409-1417, 1423. DOI: 10.3760/cma.j.issn.0253-3758.2015.08.007.
[5]
SIVALOKANATHAN S. The role of cardiovascular magnetic resonance imaging in the evaluation of hypertrophic cardiomyopathy[J/OL]. Diagnostics (Basel), 2022, 12(2): 314 [2025-04-10]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8871211/. DOI: 10.3390/diagnostics12020314.
[6]
SERMESANT M, DELINGETTE H, COCHET H, et al. Applications of artificial intelligence in cardiovascular imaging[J]. Nat Rev Cardiol, 2021, 18(8): 600-609. DOI: 10.1038/s41569-021-00527-2.
[7]
FOTAKI A, PUYOL-ANTÓN E, CHIRIBIRI A, et al. Artificial intelligence in cardiac MRI: is clinical adoption forthcoming [J/OL]. Front Cardiovasc Med, 2022, 8: 818765 [2025-04-10]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8785419/. DOI: 10.3389/fcvm.2021.818765.
[8]
OMMEN S R, HO C Y, ASIF I M, et al. 2024 AHA/ACC/AMSSM/HRS/PACES/SCMR guideline for the management of hypertrophic cardiomyopathy[J]. J Am Coll Cardiol, 2024, 83(23): 2324-2405. DOI: 10.1016/j.jacc.2024.02.014.
[9]
KRAMER C M, BARKHAUSEN J, BUCCIARELLI-DUCCI C, et al. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 17 [2025-04-10]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7038611/. DOI: 10.1186/s12968-020-00607-1.
[10]
BANDETTINI W P, SHANBHAG S M, MANCINI C, et al. A comparison of cine CMR imaging at 0.55 T and 1.5 T[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 37 [2025-04-10]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7232838/. DOI: 10.1186/s12968-020-00618-y.
[11]
NORTHRUP B E, MCCOMMIS K S, ZHANG H S, et al. Resting myocardial perfusion quantification with CMR arterial spin labeling at 1.5 T and 3.0 T[J/OL]. J Cardiovasc Magn Reson, 2008, 10(1): 53 [2025-04-10]. https://pmc.ncbi.nlm.nih.gov/articles/PMC2654036/. DOI: 10.1186/1532-429X-10-53.
[12]
GUTBERLET M, SCHWINGE K, FREYHARDT P, et al. Influence of high magnetic field strengths and parallel acquisition strategies on image quality in cardiac 2D CINE magnetic resonance imaging: comparison of 1.5 T vs. 3.0T[J]. Eur Radiol, 2005, 15(8): 1586-1597. DOI: 10.1007/s00330-005-2768-z.
[13]
GERRETSEN S C, VERSLUIS B, BEKKERS S M, et al. Cardiac cine MRI: comparison of 1.5 T, non-enhanced 3.0 T and blood pool enhanced 3.0 T imaging[J]. Eur J Radiol, 2008, 65(1): 80-85. DOI: 10.1016/j.ejrad.2007.11.004.
[14]
CURIONE D, CILIBERTI P, MONTI C B, et al. Compressed sensing cardiac cine imaging compared with standard balanced steady-state free precession cine imaging in a pediatric population[J/OL]. Radiol Cardiothorac Imaging, 2022, 4(2): e210109 [2025-04-10]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9059096/. DOI: 10.1148/ryct.210109.
[15]
CRAFT J, LI Y, NASHTA N F, et al. Comparison between compressed sensing and segmented cine cardiac magnetic resonance: a meta-analysis[J/OL]. BMC Cardiovasc Disord, 2023, 23(1): 473 [2025-04-10]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10512640/. DOI: 10.1186/s12872-023-03426-1.
[16]
RAJIAH P S, SUNDARAM B, NG M Y, et al. Artifacts at cardiac MRI: imaging appearances and solutions[J/OL]. Radiographics, 2025, 45(1): e230200 [2025-04-10]. https://pubmed.ncbi.nlm.nih.gov/39745866/. DOI: 10.1148/rg.230200.
[17]
SCHULTZ A, CASPAR T, SCHAEFFER M, et al. Late gadolinium enhancement cardiac imaging on a 3T scanner with parallel RF transmission technique: prospective comparison of 3D-PSIR and 3D-IR[J]. Eur Radiol, 2016, 26(6): 1547-1555. DOI: 10.1007/s00330-015-4002-y.
[18]
DARTY S, JENISTA E, KIM R J, et al. Society for cardiovascular magnetic resonance recommendations for training and competency of CMR technologists[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 68 [2025-04-10]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9721081/. DOI: 10.1186/s12968-022-00900-1.
[19]
KLINKE V, MUZZARELLI S, LAURIERS N, et al. Quality assessment of cardiovascular magnetic resonance in the setting of the European CMR registry: description and validation of standardized criteria[J/OL]. J Cardiovasc Magn Reson, 2013, 15(1): 55 [2025-04-10]. https://pmc.ncbi.nlm.nih.gov/articles/PMC3707748/. DOI: 10.1186/1532-429X-15-55.
[20]
SCHULZ-MENGER J, BLUEMKE D A, BREMERICH J, et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance - 2020 update: Society for Cardiovascular Magnetic Resonance (SCMR): Board of Trustees Task Force on Standardized Post-Processing[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 19 [2025-04-10]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7066763/. DOI: 10.1186/s12968-020-00610-6.
[21]
National Health Commission of the People's Republic of China, Ministry of Education of the People's Republic of China, Ministry of Science and Technology of the People's Republic of China, Administration of Traditional Chinese Medicine of the People's Republic of China. Measures for ethical review of life science and medical research involving human beings[EB/OL]. (2023-02-28) [2025-04-10]. https://www.nhc.gov.cn/qjjys/c100016/202302/6b6e447b3edc4338856c9a652a85f44b.shtml.
[22]
FEDOROV A, BEICHEL R, KALPATHY-CRAMER J, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network[J]. Magn Reson Imaging, 2012, 30(9): 1323-1341. DOI: 10.1016/j.mri.2012.05.001.
[23]
NOLDEN M, ZELZER S, SEITEL A, et al. The medical imaging interaction toolkit: challenges and advances: 10 years of open-source development[J]. Int J Comput Assist Radiol Surg, 2013, 8(4): 607-620. DOI: 10.1007/s11548-013-0840-8.
[24]
YUSHKEVICH P A, PIVEN J, HAZLETT H C, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability[J]. Neuroimage, 2006, 31(3): 1116-1128. DOI: 10.1016/j.neuroimage.2006.01.015.
[25]
DIAZ-PINTO A, ALLE S, NATH V, et al. MONAI Label: a framework for AI-assisted interactive labeling of 3D medical images[J/OL]. Med Image Anal, 2024, 95: 103207 [2025-04-10]. https://pubmed.ncbi.nlm.nih.gov/38776843/. DOI: 10.1016/j.media.2024.103207.
[26]
PETERSEN S E, AUNG N, SANGHVI M M, et al. Reference ranges for cardiac structure and function using cardiovascular magnetic resonance (CMR) in Caucasians from the UK Biobank population cohort[J/OL]. J Cardiovasc Magn Reson, 2017, 19(1): 18 [2025-04-10]. https://pmc.ncbi.nlm.nih.gov/articles/PMC5304550/. DOI: 10.1186/s12968-017-0327-9.
[27]
RETSON T A, MASUTANI E M, GOLDEN D, et al. Clinical performance and role of expert supervision of deep learning for cardiac ventricular volumetry: a validation study[J/OL]. Radiol Artif Intell, 2020, 2(4): e190064 [2025-04-10]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7392063/. DOI: 10.1148/ryai.2020190064.
[28]
HUDSMITH L E, PETERSEN S E, FRANCIS J M, et al. Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging[J]. J Cardiovasc Magn Reson, 2005, 7(5): 775-782. DOI: 10.1080/10976640500295516.
[29]
PAPAVASSILIU T, KÜHL H P, SCHRÖDER M, et al. Effect of endocardial trabeculae on left ventricular measurements and measurement reproducibility at cardiovascular MR imaging[J]. Radiology, 2005, 236(1): 57-64. DOI: 10.1148/radiol.2353040601.
[30]
CHUANG M L, GONA P, HAUTVAST G L T F, et al. Correlation of trabeculae and papillary muscles with clinical and cardiac characteristics and impact on CMR measures of LV anatomy and function[J]. JACC Cardiovasc Imaging, 2012, 5(11): 1115-1123. DOI: 10.1016/j.jcmg.2012.05.015.
[31]
CHILDS H, MA L, MA M, et al. Comparison of long and short axis quantification of left ventricular volume parameters by cardiovascular magnetic resonance, with ex-vivo validation[J/OL]. J Cardiovasc Magn Reson, 2011, 13(1): 40 [2025-04-10]. https://pmc.ncbi.nlm.nih.gov/articles/PMC3169477/. DOI: 10.1186/1532-429X-13-40.
[32]
GONZALES R A, SEEMANN F, LAMY J, et al. Automated left atrial time-resolved segmentation in MRI long-axis cine images using active contours[J/OL]. BMC Med Imaging, 2021, 21(1): 101 [2025-04-10]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8214286/. DOI: 10.1186/s12880-021-00630-3.
[33]
MIKAMI Y, KOLMAN L, JONCAS S X, et al. Accuracy and reproducibility of semi-automated late gadolinium enhancement quantification techniques in patients with hypertrophic cardiomyopathy[J/OL]. J Cardiovasc Magn Reson, 2014, 16: 85 [2025-04-10]. https://pmc.ncbi.nlm.nih.gov/articles/PMC4189726/. DOI: 10.1186/s12968-014-0085-x.

PREV Research progress on the application of magnetic resonance spectroscopy in hematological diseases
NEXT Investigation of the value of olfactory neural circuit remodeling in T2DM patients treated with three anti-diabetic drugs
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn