Share:
Share this content in WeChat
X
Clinical Article
Study of the value of texture analysis based on neuromelanin imaging in the diagnosis of Parkinson's disease
CHEN Hong  BAI Fuyun  AN Peng  CHEN Yue  GAO Ping 

Cite this article as: CHEN H, BAI F Y, AN P, et al. Study of the value of texture analysis based on neuromelanin imaging in the diagnosis of Parkinson's disease[J]. Chin J Magn Reson Imaging, 2025, 16(6): 34-41, 47. DOI:10.12015/issn.1674-8034.2025.06.005.


[Abstract] Objective To evaluate the diagnostic value of neuromelanin magnetic resonance imaging (NM-MRI) combined with radiomics for Parkinson's disease (PD) and to explore specific imaging biomarkers.Materials and Methods Fifty-seven PD patients and thirty-four healthy controls (HC) were included. The substantia nigra of the midbrain was used as the area of interest,the features were acquired using a modified 2D-T1-fast spin echo sequence (2D-T1-FSE). region of interest (ROI) segmentation was performed using 3D-Slicer 4.8.1, and features were selected through least absolute shrinkage and selection operator (LASSO) regression to construct a radiomics score, establishing a combined diagnostic model. Participants were divided into a training set and a test set in a 7∶3 ratio, comparing the diagnostic performance of the radiomics model, traditional clinical diagnostic models, and the combined model, and conducting correlation analyses between high-weighted features and some clinical scales.Results Ten significant radiomics features (P < 0.05) were selected; the area under the curve (AUC) for the combined model, radiomics model, and traditional clinical diagnostic model in the training set were 0.90 [95% confidence interval (CI) 0.83 to 0.98], 0.89 (0.81 to 0.97) and 0.70 (0.56 to 0.83), the AUCs of the test groups were 0.88 (0.76 to 1.00), 0.88 (0.81 to 1.00) and 0.78 (0.60 to 0.96), respectively; the decision curve shows that imaging omics significantly improved clinical evaluation efficiency; in traditional clinical diagnostic models, Head_CNR and Whole_CNR showing significant statistical differences in diagnosing PD (P < 0.01); LeastAxisLength, LargeAreaEmphasis, and Head_CNR are negatively correlated with H-Y grading but show no significant correlation with the Unified Parkinson's Disease Rating Scale Part Ⅲ (UPDRS-Ⅲ).Conclusions The NM-MRI imaging omics combined model can significantly improve the accuracy of PD diagnosis, and the selected imaging omics features such as SurfaceVolumeRatio and Mean have the potential to become PD-specific markers. Meanwhile, Head_CNR and morphological parameters (LeastAxisLength and LargeAreaEmphasis) have clinical application value for the quantitative evaluation of disease severity.
[Keywords] Parkinson's disease;magnetic resonance imaging;neuromelanin imaging;imaging omics;texture analysis

CHEN Hong1   BAI Fuyun1   AN Peng2   CHEN Yue3   GAO Ping1*  

1 Hubei Provincial Clinical Research Center for Parkinson's Disease, Depatment of Radiology, Xiangyang NO. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China

2 Depatment of Radiology, Xiangyang NO. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China

3 Department of Neurology, Xiangyang NO. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China

Corresponding author: GAO P, E-mail: gaoping0226@163.com

Conflicts of interest   None.

Received  2025-02-10
Accepted  2025-06-10
DOI: 10.12015/issn.1674-8034.2025.06.005
Cite this article as: CHEN H, BAI F Y, AN P, et al. Study of the value of texture analysis based on neuromelanin imaging in the diagnosis of Parkinson's disease[J]. Chin J Magn Reson Imaging, 2025, 16(6): 34-41, 47. DOI:10.12015/issn.1674-8034.2025.06.005.

[1]
TANNER C M, OSTREM J L. Parkinson's Disease[J]. N Engl J Med, 2024, 391(5): 442-452. DOI: 10.1056/NEJMra2401857.
[2]
JANKOVIC J, TAN E K. Parkinson's disease: etiopathogenesis and treatment[J]. J Neurol Neurosurg Psychiatry, 2020, 91(8): 795-808. DOI: 10.1136/jnnp-2019-322338.
[3]
RAJAN S, KAAS B. Parkinson's Disease: Risk Factor Modification and Prevention[J]. Semin Neurol, 2022, 42(5): 626-638. DOI: 10.1055/s-0042-1758780.
[4]
YE H, ROBAK L A, YU M, et al. Genetics and Pathogenesis of Parkinson's Syndrome[J]. Annu Rev Pathol, 2023, 18: 95-121. DOI: 10.1146/annurev-pathmechdis-031521-034145.
[5]
MITCHELL T, LEHERICY S, CHIU S Y, et al. Emerging Neuroimaging Biomarkers Across Disease Stage in Parkinson Disease: A Review[J]. JAMA Neurol, 2021, 78(10): 1262-1272. DOI: 10.1001/jamaneurol.2021.1312.
[6]
VRIJSEN S, HOUDOU M, CASCALHO A, et al. Polyamines in Parkinson's Disease:Balancing Between Neurotoxicity and Neuroprotection[J]. Annu Rev Biochem, 2023, 92: 435-464. DOI: 10.1146/annurev-biochem-071322-021330.
[7]
YAN Y, ZHANG M, REN W, et al. Neuromelanin-sensitive magnetic resonance imaging: Possibilities and promises as an imaging biomarker for Parkinson's disease[J]. Eur J Neurosci, 2024, 59(10): 2616-2627. DOI: 10.1111/ejn.16296.
[8]
HE N, CHEN Y, LEWITT P A, et al. Application of Neuromelanin MR Imaging in Parkinson Disease[J]. J Magn Reson Imaging, 2023, 57(2): 337-352. DOI: 10.1002/jmri.28414.
[9]
OSHIMA S, FUSHIMI Y, OKADA, T, et al. Neuromelanin-Sensitive Magnetic Resonance Imaging Using DANTE Pulse[J]. Mov Disord, 2021, 36(4): 874-882. DOI: 10.1002/mds.28417.
[10]
CHO S J, BAE Y J, KIM J M, et al. Diagnostic performance of neuromelanin-sensitive magnetic resonance imaging for patients with Parkinson's disease and factor analysis for its heterogeneity:a systematic review and meta-analysis[J]. Eur Radiol, 2021, 31(3): 1268-1280. DOI: 10.1007/s00330-020-07240-7.
[11]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics:extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[12]
HUANG W, TAN K, ZHANG Z, et al. A Review of Fusion Methods for Omics and Imaging Data[J]. IEEE/ACM Trans Comput Biol Bioinform, 2023, 20(1): 74-93. DOI: 10.1109/TCBB.2022.3143900.
[13]
POSTUMA R B, BERG D, STERN M, et al. MDS clinical diagnostic criteria for Parkinson's disease[J]. Mov Disord, 2015, 30(12): 1591-1601. DOI: 10.1002/mds.26424.
[14]
JIN L, WANG J, WANG C, et al. Combined Visualization of Nigrosome-1 and Neuromelanin in the Substantia Nigra Using 3T MRI for the Differential Diagnosis of Essential Tremor and de novo Parkinson's Disease[J/OL]. Front Neurol, 2019, 12(10): 100 [2025-02-10]. https://pubmed.ncbi.nlm.nih.gov/30809189/. DOI: 10.3389/fneur.2019.00100.
[15]
KUMAR S, GOYAL L, SINGH S. Tremor and Rigidity in Patients with Parkinson's Disease: Emphasis on Epidemiology, Pathophysiology and Contributing Factors[J]. CNS Neurol Disord Drug Targets, 2022, 21(7): 596-609. DOI: 10.2174/1871527320666211006142100.
[16]
LI Y, WU X, YANG P, et al. Machine Learning for Lung Cancer Diagnosis, Treatment, and Prognosis[J]. Genomics Proteomics Bioinformatics, 2022, 20(5): 850-866. DOI: 10.1016/j.gpb.2022.11.003.
[17]
POURSAEED R, MOHAMMADZADEH M, SAFAEI A A. Survival prediction of glioblastoma patients using machine learning and deep learning: a systematic review[J/OL]. BMC Cancer, 2024, 24(1): 1581 [2025-02-10]. https://doi.org/10.1186/s12885-024-13320-4. DOI: 10.1186/s12885-024-13320-4.
[18]
XUE P Y, LÜ K X, et al. Value of imaging omics based on NM-MRI in the diagnosis of Parkinson's disease[J]. China Medicine And Pharmacy, 2022, 12(23): 160-163. DOI: 10.3969/j.issn.2095-0616.2022.23.041.
[19]
WEI F L, LIU D, LI X Y, et al. Assessment of Parkinson's disease severity based on T2-weighted magnetic resonance imaging radiomic modeling[J]. Chin J Magn Reson Imaging, 2024, 15(11): 12-16, 38. DOI: 10.12015/issn.1674-8034.2024.11.003.
[20]
ZHANG J, WU J, ZHOU X S, et al. Recent advancements in artificial intelligence for breast cancer:Image augmentation, segmentation, diagnosis, and prognosis approaches[J]. Semin Cancer Biol, 2023, 96: 11-25. DOI: 10.1016/j.semcancer.2023.09.001.
[21]
WANG X, HAO Y, SUN H, et al. MRI Imaging Omics and Risk Factors Analysis of PWMD in Premature Infants Based on Fuzzy Clustering Algorithm[J/OL]. Contrast Media Mol Imaging, 2022, 2022: 8624617 [2025-02-10]. https://doi.org/10.1155/2022/8624617. DOI: 10.1155/2022/8624617.
[22]
GUAN Q L, ZHANG H X, GU J P, et al. Omics-imaging signature-based nomogram to predict the progression-free survival of patients with hepatocellular carcinoma after transcatheter arterial chemoembolization[J]. World J Clin Cases, 2024, 12(18): 3340-3350. DOI: 10.12998/wjcc.v12.i18.3340.
[23]
CUI Q, SUN L, ZHANG Y, et al. Value of breast MRI omics features and clinical characteristics in Breast Imaging Reporting and Data System (BI-RADS) category 4 breast lesions:an analysis of radiomics-based diagnosis[J/OL]. Ann Transl Med, 2021, 9(22): 1677 [2025-02-10]. https://doi.org/10.21037/atm-21-5441. DOI: 10.21037/atm-21-5441.
[24]
SHI J Y, WANG X, DING G Y, et al. Exploring prognostic indicators in the pathological images of hepatocellular carcinoma based on deep learning[J]. Gut, 2021, 70(5): 951-961. DOI: 10.1136/gutjnl-2020-320930.
[25]
SONG X Y, SHEN T C, HU X Y, et al. The value of radiomics nomogram based on thin-section CT images in identifying benign and malignant pulmonary nodules[J]. Journal of Modern Oncology, 2023, 31(8): 1502-1506. DOI: 10.3969/j.issn.1672-4992.2023.08.021.
[26]
KANG J J, CHEN Y, BAO S L, et al. A Study on the Value of QSM Radiomics Based on Iron Deposition in Substantia Nigra in Diagnosing of Parkinson's Disease[J]. Journal of Clinical Radiology, 2022, 41(1): 6-11. DOI: 10.13437/j.cnki.jcr.2022.01.002.
[27]
PATEL R, KOMPOLITI K. Sex and Gender Differences in Parkinson's Disease[J]. Neurol Clin, 2023, 41(2): 371-379. DOI: 10.1016/j.ncl.2022.12.001.
[28]
YANG X F, ZHONG C Q, et al. The Value of Neuromelanin-Sensitive Magnetic Resonance Imaging in the Diagnosis of Parkinson's Disease[J]. Journal of Clinical Radiology, 2021, 40(5): 855-859. DOI: 10.13437/j.cnki.jcr.2021.05.005.
[29]
WANG S, WU T, CAI Y, et al. Neuromelanin magnetic resonance imaging of substantia nigra and locus coeruleus in Parkinson's disease with freezing of gait[J/OL]. Front Aging Neurosci, 2023, 15: 1060935 [2025-02-10]. https://doi.org/10.3389/fnagi.2023.1060935. DOI: 10.3389/fnagi.2023.1060935.
[30]
WANG X, HUANG P, HAACKE E M, et al. Locus coeruleus and substantia nigra neuromelanin magnetic resonance imaging differentiates Parkinson's disease and essential tremor[J/OL]. Neuroimage Clin, 2023, 38: 103420 [2025-02-10]. https://doi.org/10.1016/j.nicl.2023.103420. DOI: 10.1016/j.nicl.2023.103420.
[31]
GUO Y, WANG J. Progress in magnetic resonance imaging technology for neuromelanin in Parkinson's disease[J]. Radiologic Practice, 2022, 37(4): 525-528. DOI: 10.13609/j.cnki.1000-0313.2022.04.020.
[32]
TINAZ S. Magnetic resonance imaging modalities aid in the differential diagnosis of atypical parkinsonian syndromes[J/OL]. Front Neurol, 2023, 14: 1082060 [2025-02-10]. https://doi.org/10.3389/fneur.2023.1082060. DOI: 10.3389/fneur.2023.1082060.
[33]
De Pietro Franco Zorzenon C, Almeida Antônio Bienes G H, Duarte Alves E, et al. Magnetic resonance imaging evaluation of nigrosome 1 and neuromelanin can assist Parkinson's disease diagnosis, but requires an expert neuroradiologist[J]. Parkinsonism Relat Disord, 2021, 83: 8-12. DOI: 10.1016/j.parkreldis.2020.12.006.
[34]
SALZMAN G, KIM J, HORGA G, et al. Standardized Data Acquisition for Neuromelanin-sensitive Magnetic Resonance Imaging of the Substantia Nigra[J/OL]. J Vis Exp, 2021, 175 [2025-02-10]. https://doi.org/10.3791/62493. DOI: 10.3791/62493.
[35]
GAO P, ZHOU P Y, LI G, et al. Universality of Swallow Tail Appearance in Nigra of Non-Parkinson's Disease People at 3.0T SWI[J]. Journal of Sun Yat-Sen University (Medical Sciences), 2015, 36(4): 635-640.
[36]
GU H F, DAI H. Diagnostic value of texture analysis based on diffusion tensor imaging in Parkinson's disease[J]. Chin J Magn Reson Imaging, 2021, 12(11): 1-6. DOI: 10.12015/issn.1674-8034.2021.11.001.
[37]
GU X, PENG M Y, CHEN Y C, et al. The study of diagnosing the Parkinson's disease based on substantia nigraradiomics on susceptibility-weighted imaging[J]. Chin J Magn Reson Imaging, 2023, 14(10): 26-30. DOI: 10.12015/issn.1674-8034.2023.10.005.
[38]
YAN S, LU J, LI Y, et al. Spatiotemporal patterns of brain iron-oxygen metabolism in patients with Parkinson's disease[J]. Eur Radiol, 2024, 34(5): 3074-3083. DOI: 10.1007/s00330-023-10283-1.
[39]
LEE H, CHO H, LEE M J, et al. Differential effect of iron and myelin on susceptibility MRI in the substantia nigra[J]. Radiology, 2021, 301(3): 682-691. DOI: 10.1148/radiol.2021210116.
[40]
ZHANG Y C, LIU J. Biomarkers:facilitating early diagnosis of Parkinson disease[J]. Chinese Journal of Practical Internal Medicine, 2023, 43(10): 812-821. DOI: 10.19538/j.nk2023100105.
[41]
DURMAZ ÇELIK N, YAMAN KULA A, TOPRAK U, et al. Evaluation of Substantia Nigra morphology in Parkinson's Disease[J/OL]. Medicine, 2024, 103(12): e37538 [2025-02-10]. https://doi.org/10.1097/MD.0000000000037538. DOI: 10.1097/MD.0000000000037538.
[42]
HE X Q, LI X Y, SHANG D D, et al. Utility of 3D-T1WI and T2 FLAIR for diagnosis of Parkinson's disease using radionics[J]. Chinese Journal of Medicine, 2024, 59(12): 1320-1325. DOI: 10.3969/j.issn.1008-1070.2024.12.012.
[43]
SHIMOZONO T, SHIIBA T, TAKANO K. Radiomics score derived from T1-w/T2-w ratio image can predict motor symptom progression in Parkinson's disease[J]. Eur Radiol, 2024, 34(12): 7921-7933. DOI: 10.1007/s00330-024-10886-2.

PREV Graph theory analysis of Alzheimer,s disease patients based on gray matter structural covariance network
NEXT Changes in cerebral gray matter volume in patients with tremor-dominant Parkinson,s disease: A voxel-based morphometry study
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn