Share:
Share this content in WeChat
X
Clinical Article
A study on differences of regional homogeneity on brain function between cerebral small vessel disease patients with and without cognitive impairment
WANG Wenwen  HUANG Jing  CHENG Runtian  LIU Xiaoshuang  LUO Tianyou 

Cite this article as: WANG W W, HUANG J, CHENG R T, et al. A study on differences of regional homogeneity on brain function between cerebral small vessel disease patients with and without cognitive impairment[J]. Chin J Magn Reson Imaging, 2025, 16(6): 48-54. DOI:10.12015/issn.1674-8034.2025.06.007.


[Abstract] Objective To explore the differences of regional homogeneity on brain function and their correlations with cognitive assessments in cerebral small vessel disease (CSVD) patients with and without cognitive impairment and healthy controls (HC).Materials and Methods A retrospective analysis was conducted on the demographic characteristics of 33 CSVD patients with mild cognitive impairment (CSVD-m), 32 CSVD patients with no cognitive impairment (CSVD-n), and 30 gender-, age-, education-matched healthy controls (HC). The cognitive function of all subjects was evaluated using a series of cognitive assessments. T1-weighted structural magnetic resonance imaging data and resting-state functional magnetic resonance imaging data of all subjects were collected, and the regional homogeneity (ReHo) values of 170 brain regions in the automated anatomical labeling (AAL) template were calculated. The differences of ReHo values among the three groups and the relationships between ReHo values in altered brain regions and cognitive assessments were analyzed.Results Compared with the HC group, the CSVD-m group and CSVD-n group had abnormal areas in the default mode network, subcortical network, sensorimotor network, and visual network (GRF correction, voxel-level P < 0.001, cluster-level P < 0.05). Compared with the CSVD-n group, the CSVD-m group had abnormal areas in the visual network (GRF correction, voxel-level P < 0.001, cluster-level P < 0.05). In the CSVD-m group, the ReHo values of the left caudate (r = 0.453, P = 0.008) and right middle cingulum (r = 0.349, P = 0.046) were positively correlated with the trail making test B; the ReHo values of the right insula were positively correlated with the auditory verbal learning test-delayed recall (r = 0.386, P = 0.027); the ReHo values of the left Rolandic operculum (r = -0.348, P = 0.047) and lingual gyrus (r = -0.372, P = 0.033) were negatively correlated with the Rey-Osterrieth complex figure test-immediate recall; the ReHo values of the left postcentral gyrus were negatively correlated with the Stroop Ⅰ test (r = -0.347, P = 0.048).Conclusions CSVD patients exhibit abnormal regional homogeneity across multiple brain regions, most notably in the right middle cingulum and insula, as well as the left caudate, Rolandic operculum, postcentral gyrus, and lingual gyrus. These alterations are closely associated with cognitive functions such as attention, executive function, and memory. These findings may reflect the neuropathophysiological basis of CSVD-related cognitive impairment and hold potential value as early neuroimaging markers for its identification.
[Keywords] cerebrovascular disorders;cognitive impairment;magnetic resonance imaging;regional homogeneity;brain network

WANG Wenwen   HUANG Jing   CHENG Runtian   LIU Xiaoshuang   LUO Tianyou*  

Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

Corresponding author: LUO T Y, E-mail: ltychy@sina.com

Conflicts of interest   None.

Received  2025-01-23
Accepted  2025-06-06
DOI: 10.12015/issn.1674-8034.2025.06.007
Cite this article as: WANG W W, HUANG J, CHENG R T, et al. A study on differences of regional homogeneity on brain function between cerebral small vessel disease patients with and without cognitive impairment[J]. Chin J Magn Reson Imaging, 2025, 16(6): 48-54. DOI:10.12015/issn.1674-8034.2025.06.007.

[1]
DUERING M, BIESSELS G J, BRODTMANN A, et al. Neuroimaging standards for research into small vessel disease-advances since 2013[J]. Lancet Neurol, 2023, 22(7): 602-618. DOI: 10.1016/s1474-4422(23)00131-x.
[2]
CANNISTRARO R J, BADI M, EIDELMAN B H, et al. CNS small vessel disease: a clinical review[J]. Neurology, 2019, 92(24): 1146-1156. DOI: 10.1212/wnl.0000000000007654.
[3]
PIAO S, CHEN K, WANG N, et al. Modular level alterations of structural-functional connectivity coupling in mild cognitive impairment patients and interactions with age effect[J]. J Alzheimers Dis, 2023, 92(4): 1439-1450. DOI: 10.3233/jad-220837.
[4]
GUO Y, MA Y, WANG G, et al. Modular-level alterations of single-subject gray matter networks in schizophrenia[J]. Brain Imaging Behav, 2022, 16(2): 855-867. DOI: 10.1007/s11682-021-00571-z.
[5]
RAICHLE M E. The brain's default mode network[J]. Annu Rev Neurosci, 2015, 38: 433-447. DOI: 10.1146/annurev-neuro-071013-014030.
[6]
MAREK S, DOSENBACH N U F. The frontoparietal network: function, electrophysiology, and importance of individual precision mapping[J]. Dialogues Clin Neurosci, 2018, 20(2): 133-140. DOI: 10.31887/DCNS.2018.20.2/smarek.
[7]
JANACSEK K, EVANS T M, KISS M, et al. Subcortical cognition: the fruit below the rind[J]. Annu Rev Neurosci, 2022, 45: 361-386. DOI: 10.1146/annurev-neuro-110920-013544.
[8]
STUMME J, JOCKWITZ C, HOFFSTAEDTER F, et al. Functional network reorganization in older adults: Graph-theoretical analyses of age, cognition and sex[J/OL]. Neuroimage, 2020, 214: 116756 [2025-01-20]. https://pubmed.ncbi.nlm.nih.gov/32201326/. DOI: 10.1016/j.neuroimage.2020.116756.
[9]
O'RAWE J F, HUANG A S, KLEIN D N, et al. Posterior parietal influences on visual network specialization during development: an fMRI study of functional connectivity in children ages 9 to 12[J]. Neuropsychologia, 2019, 127: 158-170. DOI: 10.1016/j.neuropsychologia.2019.03.001.
[10]
CROSSLEY N A, MECHELLI A, SCOTT J, et al. The hubs of the human connectome are generally implicated in the anatomy of brain disorders[J]. Brain, 2014, 137(8): 2382-2395. DOI: 10.1093/brain/awu132.
[11]
XIA M, WANG J, HE Y. BrainNet Viewer: a network visualization tool for human brain connectomics[J/OL]. PLoS One, 2013, 8(7): e68910 [2025-01-20]. https://pubmed.ncbi.nlm.nih.gov/23861951/. DOI: 10.1371/journal.pone.0068910.
[12]
PINTER D, ENZINGER C, FAZEKAS F. Cerebral small vessel disease, cognitive reserve and cognitive dysfunction[J]. J Neurol, 2015, 262(11): 2411-2419. DOI: 10.1007/s00415-015-7776-6.
[13]
CHEN F, CHEN Q, ZHU Y, et al. Alterations in dynamic functional connectivity in patients with cerebral small vessel disease[J]. Transl Stroke Res, 2024, 15(3): 580-590. DOI: 10.1007/s12975-023-01148-2.
[14]
CHEN S, HUANG R, ZHANG M, et al. Altered brain spontaneous activity in patients with cerebral small vessel disease using the amplitude of low-frequency fluctuation of different frequency bands[J/OL]. Front Neurosci, 2023, 17: 1282496 [2025-01-20]. https://pubmed.ncbi.nlm.nih.gov/38033542/. DOI: 10.3389/fnins.2023.1282496.
[15]
HU Y, YANG Y, HOU X, et al. The influence of white matter hyperintensities severity on functional brain activity in cerebral small vessel disease: an rs-fMRI study[J]. J Xray Sci Technol, 2022, 30(6): 1213-1227. DOI: 10.3233/xst-221218.
[16]
ZHANG X, WANG Z, ZHENG D, et al. Aberrant spontaneous static and dynamic amplitude of low-frequency fluctuations in cerebral small vessel disease with or without mild cognitive impairment[J/OL]. Brain Behav, 2023, 13(12): e3279 [2025-01-20]. https://pubmed.ncbi.nlm.nih.gov/37815202/. DOI: 10.1002/brb3.3279.
[17]
ZENG S, MA L, MAO H, et al. Dynamic functional network connectivity in patients with a mismatch between white matter hyperintensity and cognitive function[J/OL]. Front Aging Neurosci, 2024, 16: 1418173 [2025-01-20]. https://pubmed.ncbi.nlm.nih.gov/39086757/. DOI: 10.3389/fnagi.2024.1418173.
[18]
ZANG Y, JIANG T, LU Y, et al. Regional homogeneity approach to fMRI data analysis[J]. Neuroimage, 2004, 22(1): 394-400. DOI: 10.1016/j.neuroimage.2003.12.030.
[19]
DICIOTTI S, ORSOLINI S, SALVADORI E, et al. Resting state fMRI regional homogeneity correlates with cognition measures in subcortical vascular cognitive impairment[J]. J Neurol Sci, 2017, 373: 1-6. DOI: 10.1016/j.jns.2016.12.003.
[20]
YE Q, CHEN X, QIN R, et al. Enhanced regional homogeneity and functional connectivity in subjects with white matter hyperintensities and cognitive impairment[J/OL]. Front Neurosci, 2019, 13: 695 [2025-01-20]. https://pubmed.ncbi.nlm.nih.gov/31333409/. DOI: 10.3389/fnins.2019.00695.
[21]
FENG M, WEN H, XIN H, et al. Altered spontaneous brain activity related to neurologic dysfunction in patients with cerebral small vessel disease[J/OL]. Front Aging Neurosci, 2021, 13: 731585 [2025-01-20]. https://pubmed.ncbi.nlm.nih.gov/34975450/. DOI: 10.3389/fnagi.2021.731585.
[22]
ZHANG L, LI Y, BIAN L, et al. Analysis of factors affecting cranial nerve function of patients with vascular mild cognitive impairment through functional magnetic resonance imaging under artificial intelligence environment[J/OL]. Front Public Health, 2021, 9: 803659 [2025-01-20]. https://pubmed.ncbi.nlm.nih.gov/35399347/. DOI: 10.3389/fpubh.2021.803659.
[23]
CAI L N, YUE J, CAO D N, et al. Structural and functional activities of brain in patients with vascular cognitive impairment: a case-controlled magnetic resonance imaging study[J/OL]. Medicine (Baltimore), 2023, 102(15): e33534 [2025-01-20]. https://pubmed.ncbi.nlm.nih.gov/37058059/. DOI: 10.1097/md.0000000000033534.
[24]
HABER S N. Corticostriatal circuitry[J]. Dialogues Clin Neurosci, 2016, 18(1): 7-21. DOI: 10.31887/DCNS.2016.18.1/shaber.
[25]
LI Y, LIU X, JIA X, et al. Structural and functional alterations in cerebral small vessel disease: an ALE-based meta-analysis[J]. Cereb Cortex, 2023, 33(9): 5484-5492. DOI: 10.1093/cercor/bhac435.
[26]
OANE I, BARBORICA A, MINDRUTA I R. Cingulate cortex: anatomy, structural and functional connectivity[J]. J Clin Neurophysiol, 2023, 40(6): 482-490. DOI: 10.1097/wnp.0000000000000970.
[27]
JIA X, PAN Z, CHEN H, et al. Differential functional dysconnectivity of caudate nucleus subdivisions in Parkinson's disease[J]. Aging (Albany NY), 2020, 12(16): 16183-16194. DOI: 10.18632/aging.103628.
[28]
BERNARDI N F, DARAINY M, OSTRY D J. Somatosensory contribution to the initial stages of human motor learning[J]. J Neurosci, 2015, 35(42): 14316-14326. DOI: 10.1523/jneurosci.1344-15.2015.
[29]
SONG J, LEI T, LI Y, et al. Dynamic alterations in the amplitude of low-frequency fluctuation in patients with cerebral small vessel disease[J/OL]. Front Mol Neurosci, 2023, 16: 1200756 [2025-01-20]. https://pubmed.ncbi.nlm.nih.gov/37808469/. DOI: 10.3389/fnmol.2023.1200756.
[30]
ZENG Z, LUO L, CHEN Q, et al. Multimodal study of resting state functional MRI in patients with acute mild traumatic brain injury[J]. Chin J Magn Reson Imaging, 2024, 15(3): 43-49. DOI: 10.12015/issn.1674-8034.2024.03.008.
[31]
GOGOLLA N. The insular cortex[J/OL]. Curr Biol, 2017, 27(12): R580-R586 [2025-01-20]. https://pubmed.ncbi.nlm.nih.gov/28633023/. DOI: 10.1016/j.cub.2017.05.010.
[32]
LIU C, SHI L, ZHU W, et al. Fiber connectivity density in cerebral small-vessel disease patients with mild cognitive impairment and cerebral small-vessel disease patients with normal cognition[J/OL]. Front Neurosci, 2020, 14: 83 [2025-01-20]. https://pubmed.ncbi.nlm.nih.gov/32116526/. DOI: 10.3389/fnins.2020.00083.
[33]
LIU C, LI C, YIN X, et al. Abnormal intrinsic brain activity patterns in patients with subcortical ischemic vascular dementia[J/OL]. PLoS One, 2014, 9(2): e87880 [2025-01-20]. https://pubmed.ncbi.nlm.nih.gov/24498389/. DOI: 10.1371/journal.pone.0087880.
[34]
SUTOKO S, ATSUMORI H, OBATA A, et al. Lesions in the right Rolandic operculum are associated with self-rating affective and apathetic depressive symptoms for post-stroke patients[J/OL]. Sci Rep, 2020, 10(1): 20264 [2025-01-20]. https://pubmed.ncbi.nlm.nih.gov/33219292/. DOI: 10.1038/s41598-020-77136-5.
[35]
XIE C, BAI F, YU H, et al. Abnormal insula functional network is associated with episodic memory decline in amnestic mild cognitive impairment[J]. Neuroimage, 2012, 63(1): 320-307. DOI: 10.1016/j.neuroimage.2012.06.062.
[36]
DOSENBACH N U, FAIR D A, COHEN A L, et al. A dual-networks architecture of top-down control[J]. Trends Cogn Sci, 2008, 12(3): 99-105. DOI: 10.1016/j.tics.2008.01.001.
[37]
WANG Y, LIU X, HU Y, et al. Impaired functional network properties contribute to white matter hyperintensity related cognitive decline in patients with cerebral small vessel disease[J/OL]. BMC Med Imaging, 2022, 22(1): 40 [2025-01-20]. https://pubmed.ncbi.nlm.nih.gov/35264145/. DOI: 10.1186/s12880-022-00769-7.
[38]
YUAN X, HAN Y, WEI Y, et al. Regional homogeneity changes in amnestic mild cognitive impairment patients[J]. Neurosci Lett, 2016, 629: 1-8. DOI: 10.1016/j.neulet.2016.06.047.

PREV Changes in cerebral gray matter volume in patients with tremor-dominant Parkinson,s disease: A voxel-based morphometry study
NEXT A study investigating the correlation between white matter hyperintensities lesion characteristics in end-stage renal disease patients and clinical indicators using MRI 3D-FLAIR
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn