Share:
Share this content in WeChat
X
Clinical Article
MRI-based study of gray matter morphological in children with bilateral spastic cerebral palsy
LIU Junwei  XU Gaoqiang  HE Yulun  LIU Heng  ZHANG Tijiang 

Cite this article as: LIU J W, XU G Q, HE Y L, et al. MRI-based study of gray matter morphological in children with bilateral spastic cerebral palsy[J]. Chin J Magn Reson Imaging, 2025, 16(6): 72-77. DOI:10.12015/issn.1674-8034.2025.06.011.


[Abstract] Objective To investigate the cortical morphological changes in children with bilateral spastic cerebral palsy (BSCP) associated with periventricular white matter lesions (PWML).Materials and Methods Data of 19 clinically diagnosed BSCP children and 20 control children from April 2019 to September 2021 were collected. All children underwent high-resolution 3D-T1WI structural imaging and gross motor function assessments was performed for the BSCP group. Voxel-based morphometric analysis (VBM) was used to detect differences in gray matter volume between the two groups. Surface-based morphometric analysis (SBM) was employed to assess cortical thickness changes between groups. Group differences in gray matter volume and cortical thickness were analyzed using two-sample t-tests, with multiple comparison corrections applied using the FDR method.Results Compared to the control group, the BSCP group showed reduced gray matter volume in the bilateral medial prefrontal cortex, premotor area, middle cingulate cortex, caudate nucleus, thalamus, and right dorsolateral prefrontal cortex (P < 0.05, FDR corrected), with a negative correlation between the average gray matter volume of the right medial prefrontal cortex and gross motor function classification system (GMFCS) levels (r = -0.623, P = 0.004). Cortical thickness was reduced in the bilateral medial prefrontal cortex, left anterior cingulate cortex, precuneus, inferior parietal lobule, and right middle cingulate cortex (P < 0.05, FDR corrected).Conclusions Children with BSCP associated with PWML exhibit abnormalities in gray matter volume and cortical thickness across multiple brain regions, reflecting changes in the microstructure of their brains, providing imaging evidence for potential pathophysiological mechanisms.
[Keywords] cerebral palsy;magnetic resonance imaging;voxel-based morphometric analysis;surface-based morphometric analysis;grey matter

LIU Junwei   XU Gaoqiang   HE Yulun   LIU Heng   ZHANG Tijiang*  

Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Guizhou Medical Image Center, Zunyi 563000, China

Corresponding author: ZHANG T J, E-mail: tijzhang@163.com

Conflicts of interest   None.

Received  2024-11-06
Accepted  2025-06-05
DOI: 10.12015/issn.1674-8034.2025.06.011
Cite this article as: LIU J W, XU G Q, HE Y L, et al. MRI-based study of gray matter morphological in children with bilateral spastic cerebral palsy[J]. Chin J Magn Reson Imaging, 2025, 16(6): 72-77. DOI:10.12015/issn.1674-8034.2025.06.011.

[1]
JIANG H, LI X, JIN C, et al. Early Diagnosis of Spastic Cerebral Palsy in Infants with Periventricular White Matter Injury Using Diffusion Tensor Imaging[J]. AJNR Am J Neuroradiol, 2019, 40(1): 162-168. DOI: 10.3174/ajnr.A5914.
[2]
FRANKI I, MAILLEUX L, EMSELL L, et al. The relationship between neuroimaging and motor outcome in children with cerebral palsy: A systematic review-Part A. Structural imaging[J/OL]. Res Dev Disabil, 2020, 100: 103606 [2024-11-01]. https://doi.org/10.3174/ajnr.A5914. DOI: 10.3174/ajnr.A5914.
[3]
MOHANTY T, JOSEPH SD, GUNASEKARAN PK, et al. Predictors of Risk for Cerebral Palsy: A Review[J]. Pediatr Phys Ther, 2023, 35(3): 347-357. DOI: 10.1097/PEP.0000000000001020.
[4]
KUŁAK P, MACIORKOWSKA E, GOŚCIK E. Volumetric Magnetic Resonance Imaging Study of Brain and Cerebellum in Children with Cerebral Palsy[J/OL]. Biomed Res Int, 2016, 2016: 5961928 [2024-11-01]. https://pubmed.ncbi.nlm.nih.gov/27579318. DOI: 10.1155/2016/5961928.
[5]
LOCKE A, KANEKAR S. Imaging of Premature Infants[J]. Clin Perinatol, 2022, 49(3): 641-655. DOI: 10.1016/j.clp.2022.06.001.
[6]
ZHANG W, ZHANG S, ZHU M, et al. Changes of Structural Brain Network Following Repetitive Transcranial Magnetic Stimulation in Children With Bilateral Spastic Cerebral Palsy: A Diffusion Tensor Imaging Study[J/OL]. Front Pediatr, 2021, 8: 617548 [2024-11-02]. https://pubmed.ncbi.nlm.nih.gov/33520901. DOI: 10.3389/fped.2020.617548.
[7]
SHIOHAMA T, TSUJIMURA K. Quantitative Structural Brain Magnetic Resonance Imaging Analyses: Methodological Overview and Application to Rett Syndrome[J/OL]. Front Neurosci, 2022, 16: 835964 [2024-11-01]. https://pubmed.ncbi.nlm.nih.gov/35450016. DOI: 10.3389/fnins.2022.835964.
[8]
CHEN Y, PAN J, LIN A, et al. Cerebellar white and gray matter abnormalities in temporal lobe epilepsy: a voxel-based morphometry study[J/OL]. Front Neurosci, 2024,18: 1417342 [2024-11-06]. https://pubmed.ncbi.nlm.nih.gov/39156634. DOI: 10.3389/fnins.2024.1417342.
[9]
LONG X, LI L, WANG X, et al. Gray matter alterations in adolescent major depressive disorder and adolescent bipolar disorder[J]. J Affect Disord, 2023, 325: 550-563. DOI: 10.1016/j.jad.2023.01.049.
[10]
GOTO M, ABE O, HAGIWARA A, et al. Advantages of Using Both Voxel- and Surface-based Morphometry in Cortical Morphology Analysis: A Review of Various Applications[J]. Magn Reson Med Sci, 2022, 21(1): 41-57. DOI: 10.2463/mrms.rev.2021-0096.
[11]
HU J, YANG Z Q, ZHANG J J, et al. Correlation Between Grey Matter Volume and Motor Function in Children with Periventricular Leukomalacia and Spastic Cerebral Palsy: A Voxel Based Morphometry Study[J]. Chinese Journal of Medical Imaging, 2022, 30(1): 12-16, 28. DOI: 10.3969/j.issn.1005-5185.2022.01.003.
[12]
JIANG H, LIU H, HUANG T, et al. Structural network performance for early diagnosis of spastic cerebral palsy in periventricular white matter injury[J]. Brain Imaging Behav, 2021, 15(2): 855-864. DOI: 10.1007/s11682-020-00295-6.
[13]
LIU C, PENG Y, YANG Y, et al. Structure of brain grey and white matter in infants with spastic cerebral palsy and periventricular white matter injury[J]. Dev Med Child Neurol, 2024, 66(4): 514-522. DOI: 10.1111/dmcn.15739.
[14]
LI X J, TANG J L, MA B X, et al. Definition, diagnostic criteria and clinic classification of cerebral palsy[J]. Chinese Journal of Applied Clinical Pediatrics, 2014, 29(19): 1520. DOI: 10.3760/j.issn.2095-428X.2014.19.024.
[15]
BRANDT M J V, KOSMEIJER C M, ACHTERBERG E J M, et al. Timed fetal inflammation and postnatal hypoxia cause cortical white matter injury, interneuron imbalances, and behavioral deficits in a double-hit rat model of encephalopathy of prematurity[J/OL]. Brain Behav Immun Health, 2024, 40: 100817 [2024-11-06]. https://doi.org/10.1016/j.bbih.2024.100817. DOI: 10.1016/j.bbih.2024.100817.
[16]
MENON V, D'ESPOSITO M. The role of PFC networks in cognitive control and executive function[J]. Neuropsychopharmacology, 2022, 47(1): 90-103. DOI: 10.1038/s41386-021-01152-w.
[17]
SCHECK S M, PANNEK K, FIORI S, et al. Quantitative comparison of cortical and deep grey matter in pathological subtypes of unilateral cerebral palsy[J]. Dev Med Child Neurol, 2014, 56(10): 968-975. DOI: 10.1111/dmcn.12461.
[18]
TOLOMEO S, CHRISTMAS D, JENTZSCH I, et al. A causal role for the anterior mid-cingulate cortex in negative affect and cognitive control[J]. Brain, 2016, 139(6): 1844-1854. DOI: 10.1093/brain/aww069.
[19]
CORMIE M A, KAYA B, HADJIS G E, et al. Insula-cingulate structural and functional connectivity: an ultra-high field MRI study[J]. Cereb Cortex, 2023, 33(17): 9787-9801. DOI: 10.1093/cercor/bhad244.
[20]
DOMIC-SIEDE M, IRANI M, VALDÉS J, et al. Theta activity from frontopolar cortex, mid-cingulate cortex and anterior cingulate cortex shows different roles in cognitive planning performance[J/OL]. Neuroimage, 2021, 226: 117557 [2024-11-06]. https://pubmed.ncbi.nlm.nih.gov/33189934. DOI: 10.1016/j.neuroimage.2020.117557.
[21]
RAHMAN Z, MURRAY N W G, SALA-PADRÓ J, et al. Investigating the Precise Localization of the Grasping Action in the Mid-Cingulate Cortex and Future Directions[J/OL]. Front Hum Neurosci, 2022, 16: 815749 [2024-11-06]. https://pubmed.ncbi.nlm.nih.gov/35280209. DOI: 10.3389/fnhum.2022.815749.
[22]
ROLLS E T. The cingulate cortex and limbic systems for emotion, action, and memory[J]. Brain Struct Funct, 2019, 224(9): 3001-3018. DOI: 10.1007/s00429-019-01945-2.
[23]
LI Q, DEL FERRARO G, PASQUINI L, et al. Core language brain network for fMRI language task used in clinical applications[J]. Netw Neurosci, 2020, 4(1): 134-154. DOI: 10.1162/netn_a_00112.
[24]
DE AZEVEDO NETO R M, BARTELS A. Disrupting Short-Term Memory Maintenance in Premotor Cortex Affects Serial Dependence in Visuomotor Integration[J]. J Neurosci, 2021, 41(45): 9392-9402. DOI: 10.1523/JNEUROSCI.0380-21.2021.
[25]
WOLFF M, MORCEAU S, FOLKARD R, et al. A thalamic bridge from sensory perception to cognition[J]. Neurosci Biobehav Rev, 2021, 120: 222-235. DOI: 10.1016/j.neubiorev.2020.11.013.
[26]
LEE D, PAE C, LEE J D, et al. Analysis of structure-function network decoupling in the brain systems of spastic diplegic cerebral palsy[J]. Hum Brain Mapp, 2017, 38(10): 5292-5306. DOI: 10.1002/hbm.23738.
[27]
CHINTALAPATI K, MIAO H, MATHUR A, et al. Objective and Clinically Feasible Analysis of Diffusion MRI Data can Help Predict Dystonia After Neonatal Brain Injury[J]. Pediatr Neurol, 2021, 118: 6-11. DOI: 10.1016/j.pediatrneurol.2020.11.011.
[28]
HE C, YANG Y, ZHANG J J, et al. Evaluation of brain lesion in children with cerebral palsy based on T2-FLAIR scoring system[J]. Journal of Practical Radiology, 2020, 36(9): 1458-1462. DOI: 10.3969/j.issn.1002-1671.2020.09.026.
[29]
JI X, ZHOU Y, GAO Q, et al. Functional reconstruction of the basal ganglia neural circuit by human striatal neurons in hypoxic-ischaemic injured brain[J]. Brain, 2023, 146(2): 612-628. DOI: 10.1093/brain/awac358.
[30]
FAINGOLD R, PREMPUNPONG C, GARFINKLE J, et al. Association between Early Basal Ganglia and Thalami Perfusion Assessed by Color Doppler Ultrasonography and Brain Injury in Infants with Hypoxic-Ischemic Encephalopathy: A Prospective Cohort Study[J/OL]. J Pediatr, 2024, 271: 114086 [2024-11-06]. https://pubmed.ncbi.nlm.nih.gov/38705232. DOI: 10.1016/j.jpeds.2024.114086.
[31]
LV Z, LI Y, WANG Y, et al. Safety and efficacy outcomes after intranasal administration of neural stem cells in cerebral palsy: a randomized phase 1/2 controlled trial[J/OL]. Stem Cell Res Ther, 2023, 9, 14(1): 23 [2025-02-15]. https://pubmed.ncbi.nlm.nih.gov/36759901. DOI: 10.1186/s13287-022-03234-y.
[32]
SEAMANS J K, FLORESCO S B. Event-based control of autonomic and emotional states by the anterior cingulate cortex[J/OL]. Neurosci Biobehav Rev, 2022, 133: 104503 [2024-11-06]. https://doi.org/10.1016/j.neubiorev.2021.12.026. DOI: 10.1016/j.neubiorev.2021.12.026.
[33]
NAFFAA M M. Significance of the anterior cingulate cortex in neurogenesis plasticity: Connections, functions, and disorders across postnatal and adult stages[J/OL]. Bioessays, 2024, 46(3): e2300160 [2024-11-06]. https://pubmed.ncbi.nlm.nih.gov/38135889. DOI: 10.1002/bies.202300160.
[34]
DADARIO N B, SUGHRUE M E. The functional role of the precuneus[J]. Brain, 2023, 146(9): 3598-3607. DOI: 10.1093/brain/awad181.
[35]
TODEVA-RADNEVA A, KANDILAROVA S, PAUNOVA R, et al. Functional Connectivity of the Anterior Cingulate Cortex and the Right Anterior Insula Differentiates between Major Depressive Disorder, Bipolar Disorder and Healthy Controls[J/OL]. Biomedicines, 2023, 11(6): 1608 [2024-11-06]. https://pubmed.ncbi.nlm.nih.gov/37371703. DOI: 10.3390/biomedicines11061608.
[36]
NUMSSEN O, BZDOK D, HARTWIGSEN G. Functional specialization within the inferior parietal lobes across cognitive domains[J/OL]. Elife, 2021, 10: e63591 [2024-11-06]. https://pubmed.ncbi.nlm.nih.gov/33650486. DOI: 10.7554/eLife.63591.
[37]
TABASSI MOFRAD F, SCHILLER N O. Cognitive demand modulates connectivity patterns of rostral inferior parietal cortex in cognitive control of language[J]. Cogn Neurosci, 2020, 11(4): 181-193. DOI: 10.1080/17588928.2019.1696764.
[38]
LEE J D, PARK H J, PARK E S, et al. Motor pathway injury in patients with periventricular leucomalacia and spastic diplegia[J]. Brain, 2011, 134(Pt 4): 1199-1210. DOI: 10.1093/brain/awr021.
[39]
MAIR R G, FRANCOEUR M J, KRELL E M, et al. Where Actions Meet Outcomes: Medial Prefrontal Cortex, Central Thalamus, and the Basal Ganglia[J/OL]. Front Behav Neurosci, 2022, 16: 928610 [2025-02-18]. https://pubmed.ncbi.nlm.nih.gov/35864847. DOI: 10.3389/fnbeh.2022.928610.

PREV Study on the correlation between high resolution MRA of lenticularis artery and white matter injury of cerebral small vascular disease
NEXT The radioscore based on pre-radiotherapy MRI for predicting poor outcome risk in long-term follow-up of glioblastoma patients
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn