Share:
Share this content in WeChat
X
Clinical Article
Study on the evaluation of cervical medullary compression and activity in craniovertebral junction malformation used dynamic flexion-extension cervical spine MRI
FANG Xiongyi  ZENG Wei  PU Yongliang  YANG Haitao 

Cite this article as: FANG X Y, ZENG W, PU Y L, et al. Study on the evaluation of cervical medullary compression and activity in craniovertebral junction malformation used dynamic flexion-extension cervical spine MRI[J]. Chin J Magn Reson Imaging, 2025, 16(6): 110-115, 121. DOI:10.12015/issn.1674-8034.2025.06.016.


[Abstract] Objective To investigate the value of cervical medullary compression and activity in adults with simple and complex Chiari malformation by dynamic flexion-extension cervical spine MRI.Materials and Methods Retrospective collection of clinical data and preoperative cervical CT images and flexion and extension MRI images of 59 patients with Chiari malformation diagnosed clinically and radiologically in our hospital from September 2022 to July 2024. Based on the presence or absence of skull base depression, Chiari malformation was divided into a simple Chiari malformation group (n = 32) and a complex Chiari malformation group (n = 27), with 30 subjects without craniocervical junction malformation as the control group. Measure the cervical medullary angle (CMA) and length of syringomyelia in the mid sagittal plane of cervical dynamic MRI T2WI, and calculate the difference in CMA to obtain the range of cervical medullary activity. Measure the length of cerebellar tonsillar hernia in the mid sagittal plane on T1WI. Paired sample t-test was used to analyze the differences in the CMA of flexion and extension in each group. Using one-way ANOVA and Tukey's HSD pairwise comparison to explore the correlation between the CMA and its difference in flexion and extension positions among the three groups. Mann Whitney U test was used to compare the differences in cerebellar tonsillar hernia length and length of syringomyelia between simple Chiari malformation and complex Chiari malformation.Results The complex Chiari malformation group showed a significant reduction in the CMA on flexion and extension MRI compared to the simple Chiari malformation group and the control group, and the difference was statistically significant (P < 0.001). No statistically significant difference was found between the simple Chiari malformation group and the control group (P = 0.323). There was no statistically significant difference in the activity of the cervical medulla oblongata among the three groups (P = 0.699). No statistically significant differences in the length of cerebellar tonsillar hernia and length of syringomyelia between the simple Chiari malformation group and the complex Chiari malformation group (P> 0.05).Conclusions The complex Chiari malformation shows a greater degree of compression on the medulla oblongata, but no significant effect on the activity of the medulla oblongata.
[Keywords] craniovertebral junction malformation;Chiari malformation;cervical vertebra;dynamic magnetic resonance imaging;cervico medullary angle

FANG Xiongyi1, 2   ZENG Wei1   PU Yongliang1   YANG Haitao1*  

1 Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

2 Department of Radiology, the Second People's Hospital of Neijiang City, Neijiang 641000, China

Corresponding author: YANG H T, E-mail: frankyang119@126.com

Conflicts of interest   None.

Received  2025-03-22
Accepted  2025-06-05
DOI: 10.12015/issn.1674-8034.2025.06.016
Cite this article as: FANG X Y, ZENG W, PU Y L, et al. Study on the evaluation of cervical medullary compression and activity in craniovertebral junction malformation used dynamic flexion-extension cervical spine MRI[J]. Chin J Magn Reson Imaging, 2025, 16(6): 110-115, 121. DOI:10.12015/issn.1674-8034.2025.06.016.

[1]
Chinese Neurosurgical Society, Chinese Congress of Neurological Surgeons. Expert consensus on diagnosis and treatment of craniocervical junction malformation in China[J]. Chin J Neurosurg, 2016, 32(7): 659-665. DOI: 10.3760/cma.j.issn.1001-2346.2016.07.003.
[2]
SAHUQUILLO J, MONCHO D, FERRÉ A, et al. A critical update of the classification of chiari and chiari-like malformations[J/OL]. J Clin Med, 2023, 12(14): 4626 [2025-03-20]. https://pubmed.ncbi.nlm.nih.gov/37510741/. DOI: 10.3390/jcm12144626.
[3]
RODRÍGUEZ-BLANQUE R, ALMAZÁN-SOTO C, PIQUERAS-SOLA B, et al. Chiari syndrome: advances in epidemiology and pathogenesis: a systematic review[J/OL]. J Clin Med, 2023, 12(20): 6694 [2025-03-20]. https://pubmed.ncbi.nlm.nih.gov/37892831/. DOI: 10.3390/jcm12206694.
[4]
MANCARELLA C, DELFINI R, LANDI A. Chiari malformations[J/OL]. Acta Neurochir Suppl, 2019, 125: 89-95 [2025-03-20]. https://pubmed.ncbi.nlm.nih.gov/30610307/. DOI: 10.1007/978-3-319-62515-7_13.
[5]
LI Y, HU X J, WANG S X, et al. Study on CT parameters at craniocervical junction of the adult simple Arnold-Chiari malformation I[J]. Chin J Nerv Ment Dis, 2020, 46(1): 8-12. DOI: 10.3969/j.issn.1002-0152.2020.01.002.
[6]
BIANCHI F, MONTEDORO B, FRASSANITO P, et al. Chiari I malformation: management evolution and technical innovation[J]. Childs Nerv Syst, 2023, 39(10): 2757-2769. DOI: 10.1007/s00381-023-06051-7.
[7]
ERXAT K, MURADIL M, YAKUP A, et al. Research progress of Chiari malformation type I and atlantoaxial instability[J]. Chin J Orthop, 2023, 43(7): 458-464. DOI: 10.3760/cma.j.cn121113-20210407-00285.
[8]
SAMMAN M M AL, GARCIA M A, GARCÍA M, et al. Relationship of morphometrics and symptom severity in female type I chiari malformation patients with biological resilience[J]. Cerebellum, 2024, 23(3): 1146-1156. DOI: 10.1007/s12311-023-01627-0.
[9]
JIN T Y, WANG J L, ZHANG B Y, et al. The measurement and application of imaging evaluation parameters for cranio-cervical junction osseous and neural abnormalities: a review[J]. Chin J Surg, 2023, 61(11): 1024-1029. DOI: 10.3760/cma.j.cn112139-20230713-00007.
[10]
LU F, ZENG G M. MR imaging characteristics of posterior cranial Fossa in Chiari malformation type I patients[J]. Chin J Neuromed, 2020, 19(12): 1253-1259. DOI: 10.3760/cma.j.cn115354-20200206-00060.
[11]
SILVA O T DA, GHIZONI E, TEDESCHI H, et al. Role of dynamic computed tomography scans in patients with congenital craniovertebral junction malformations[J]. World J Orthop, 2017, 8(3): 271-277. DOI: 10.5312/wjo.v8.i3.271.
[12]
JOAQUIM A F, EVANGELISTA SANTOS BARCELOS A C, DANIEL J W, et al. Chamberlain's line violation in basilar invagination patients compared with normal subjects: a systematic literature review and meta-analysis[J/OL]. World Neurosurg, 2023, 173: e364-e370 [2025-03-20]. https://pubmed.ncbi.nlm.nih.gov/36822399/. DOI: 10.1016/j.wneu.2023.02.057.
[13]
LÜ B H, LI D H, CHENG X J, et al. MRI analysis of cervical medulla oblongata angle in hyperextension and hyperflexion position[J/OL]. Chin J Clin Electron Ed, 2015, 9(10): 1966-1968. [2025-03-21]. https://kns.cnki.net/kcms2/article/abstract?v=7HNy6Ze5ODFNmio8AafTBzKuT-zEbDxwmfynpXBzKz33KxrshNVlCXk_KXo7Goa284bYAWVXhIz_sq0Z3TLvxwunAuRgqa5zHHkhyQVFTSyoDX2BK4DfGBUo-iTy2bwdbREpUnLglVwFPwrJ_dt4IjObPas1zLx2Rf5YgbL1_vZSZwgWy4MqnQ==&uniplatform=NZKPT&language=CHS. DOI: 10.3877/cma.j.issn.1674-0785.2015.10.045.
[14]
EISENBERG L, GIENAPP A J, EISENBERG A, et al. Effect of body mass index on chiari malformation 1 tonsil ectopia length in adults[J/OL]. World Neurosurg, 2023, 176: e380-e383 [2025-03-20]. https://pubmed.ncbi.nlm.nih.gov/37236309/. DOI: 10.1016/j.wneu.2023.05.066.
[15]
HE Z, QIN X D, YIN R, et al. The natural history of radiological presentations in Chiari malformation type Ⅰ with scoliosis: a cross-sectional study[J]. Chin J Orthop, 2020(4): 199-207. DOI: 10.3760/cma.j.issn.0253-2352.2020.04.002.
[16]
GRENIER-CHARTRAND F, TAVERNE M, JAMES S, et al. Mobility assessment using multi-positional MRI in children with cranio-vertebral junction anomalies[J/OL]. J Clin Med, 2023, 12(21): 6714 [2025-03-20]. https://pubmed.ncbi.nlm.nih.gov/37959181/. DOI: 10.3390/jcm12216714.
[17]
WANG H Y, GE Z M. Craniocervical junction malformation combined with classic Dejerine syndrome: One case report[J]. Chin J Magn Reson Imag, 2022, 13(8): 94-95, 100. DOI: 10.12015/issn.1674-8034.2022.08.019.
[18]
EISENBERG L, EISENBERG A, GIENAPP A J, et al. Cranial versus cervical spine magnetic resonance imaging in adult chiari malformation type I diagnostics: is there a difference in tonsil ectopia length?[J/OL]. World Neurosurg, 2023, 175: e243-e246 [2025-03-20]. https://pubmed.ncbi.nlm.nih.gov/36940808/. DOI: 10.1016/j.wneu.2023.03.060.
[19]
CIARAMITARO P, MASSIMI L, BERTUCCIO A, et al. Diagnosis and treatment of Chiari malformation and syringomyelia in adults: international consensus document[J]. Neurol Sci, 2022, 43(2): 1327-1342. DOI: 10.1007/s10072-021-05347-3.
[20]
ZHOU Q, SONG C, HUANG Q G, et al. Evaluating craniovertebral stability in chiari malformation coexisting with type II basilar invagination: an observational study based on kinematic computed tomography and its clinical application[J/OL]. World Neurosurg, 2022, 164: e724-e740 [2025-03-20]. https://pubmed.ncbi.nlm.nih.gov/35595047/. DOI: 10.1016/j.wneu.2022.05.045.
[21]
HUANG Q G, YANG X Y, ZHENG D Y, et al. Exploring the pathogenesis of atlanto-occipital instability in chiari malformation with type II basilar invagination: a systematic morphological study[J]. Neurosurgery, 2023, 92(4): 837-853. DOI: 10.1227/neu.0000000000002284.
[22]
JHA S C, MIYAZAKI M, TSUMURA H. Kinetic change of spinal cord compression on flexion-extension magnetic resonance imaging in cervical spine[J/OL]. Clin Neurol Neurosurg, 2018, 174: 86-91 [2025-03-20]. https://pubmed.ncbi.nlm.nih.gov/30219623/. DOI: 10.1016/j.clineuro.2018.09.017.
[23]
LIU A, QIU N H, ZHONG X R, et al. Dynamic evaluation of the cervical spine by kinematic MRI in patients with cervical spinal cord injury without fracture and dislocation[J/OL]. J Orthop Surg Res, 2023, 18(1): 249 [2025-03-20]. https://pubmed.ncbi.nlm.nih.gov/36973814/. DOI: 10.1186/s13018-023-03745-1.
[24]
BÄCKER H C, BOCK J, TURNER P, et al. Juvenile muscular atrophy of the distal upper extremity (Hirayama syndrome): a systematic review[J]. Eur Spine J, 2022, 31(12): 3296-3307. DOI: 10.1007/s00586-022-07279-8.
[25]
ZHOU Z Q, LIN F G, ZHANG Y, et al. Correlation and reliability of cervical sagittal alignment parameters between plain radiographs and multipositional MRI images[J]. Spinal Cord, 2023, 61(5): 307-312. DOI: 10.1038/s41393-023-00895-1.
[26]
WANG X H, LIAO J C, LI Z F, et al. Comparative analysis of dynamic MRI and dynamic position X-ray film in measuring the angle between cervical vertebrae[J]. J Clin Radiol, 2020, 39(6): 1139-1143. DOI: 10.13437/j.cnki.jcr.2020.06.025.
[27]
JIAN Q, DUAN W R, LIU Z L, et al. Analysis of therapeutic effect of posterior atlantoaxial joint distraction and fusion technique in the treatment of basilar invagination-atlantoaxial dislocation complicated with syringomyelia[J]. Chin J Neurosurg, 2023, 39(3): 226-231. DOI: 10.3760/cma.j.cn112050-20220502-00228.
[28]
WAN M, ZONG R, TONG H Y, et al. A morphometric study of the atlanto-occipital joint in adult patients with Chiari malformation type I[J]. Br J Neurosurg, 2024, 38(1): 12-15. DOI: 10.1080/02688697.2020.1823940.
[29]
WANG M, HU Y, ZUO Y C, et al. Diagnosis and treatment of Chiari malformation type 1 in children: interpretation on international consensus document(2021)[J]. Chin J Neuromed, 2022, 21(8): 757-761. DOI: 10.3760/cma.j.cn115354-20220511-00318.
[30]
HEFFEZ D S, BRODERICK J, CONNOR M, et al. Is there a relationship between the extent of tonsillar ectopia and the severity of the clinical Chiari syndrome?[J]. Acta Neurochir (Wien), 2020, 162(7): 1531-1538. DOI: 10.1007/s00701-019-04171-1.

PREV MR radiomics nomogram for prenatal diagnosis of placenta accreta diseases and prediction of adverse clinical outcomes
NEXT A prospective study on the evaluation of white matter hyperintensities based on T2W-FLAIR sequence by 5.0 T MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn