Share:
Share this content in WeChat
X
Technical Article
A prospective study on the evaluation of white matter hyperintensities based on T2W-FLAIR sequence by 5.0 T MRI
CHENG Xiaoshan  CAO Li  ZHENG Xinde  WANG Rui  CHEN Caizhong  ZENG Mengsu  YANG Zhigang  MIAO Xiyin 

Cite this article as: CHENG X S, CAO L, ZHENG X D, et al. A prospective study on the evaluation of white matter hyperintensities based on T2W-FLAIR sequence by 5.0 T MRI[J]. Chin J Magn Reson Imaging, 2025, 16(6): 116-121. DOI:10.12015/issn.1674-8034.2025.06.017.


[Abstract] Objective To investigate the image quality and diagnostic value of 5.0 T T2-weighted fluid-attenuated inversion recovery (T2W-FLAIR) magnetic resonance imaging (MRI) in detecting white matter hyperintensities (WMH).Materials and Methods Prospectively included 73 patients with suspected or confirmed cerebral ischemic events who underwent 5.0 T and 3.0 T cranial MRI from November 2023 to September 2024. Image quality of T2W-FLAIR sequences at both field strengths was independently evaluated by experienced radiologists using a 5-point Likert scale. Quantitative assessments of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were performed, and WMH areas and number were compared in identical brain regions within the same patient. Statistical analysis was conducted using the Wilcoxon signed-rank test and paired chi-square test.Results Compared with 3.0 T, the 5.0 T T2W-FLAIR sequence showed higher image quality scores (5.0 vs. 4.5), increased SNR (2.44 vs. 1.97), and improved CNR (1.43 vs. 0.97), with all differences reaching statistical significance. Additionally, 5.0 T T2W-FLAIR revealed larger WMH areas (P < 0.001) and a greater number of lesions (P < 0.001) in the same brain regions compared to 3.0 T, particularly showing marked advantages in identifying micro-lesions.Conclusions The 5.0 T T2W-FLAIR sequence provides improved visualization of WMH compared to 3.0 T, especially in image clarity and micro-lesion detection. This technology holds significant clinical value for early diagnosis and accurate assessment of small ischemic brain lesions.
[Keywords] white matter hyperintensities;ultra-high field magnetic resonance imaging;ischemic stroke;fluid attenuated inversion recovery sequence;signal-to-noise ratio

CHENG Xiaoshan1, 2   CAO Li3   ZHENG Xinde3   WANG Rui4   CHEN Caizhong3   ZENG Mengsu3   YANG Zhigang1, 2*   MIAO Xiyin3*  

1 Oriental Pan-Vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai 200093, China

2 Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China

3 Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China

4 Shanghai United Imaging Healthcare Co., Ltd., Shanghai 201807, China

Corresponding author: MIAO X Y, E-mail: miao.xiyin@zs-hospital.sh.cn YANG Z G, E-mail: yang.zhigang1@zs-hospital.sh.cn

Conflicts of interest   None.

Received  2025-03-26
Accepted  2025-06-10
DOI: 10.12015/issn.1674-8034.2025.06.017
Cite this article as: CHENG X S, CAO L, ZHENG X D, et al. A prospective study on the evaluation of white matter hyperintensities based on T2W-FLAIR sequence by 5.0 T MRI[J]. Chin J Magn Reson Imaging, 2025, 16(6): 116-121. DOI:10.12015/issn.1674-8034.2025.06.017.

[1]
DE KORT F A S, COENEN M, WEAVER N A, et al. White matter hyperintensity volume and poststroke cognition: an individual patient data pooled analysis of 9 ischemic stroke cohort studies[J]. Stroke, 2023, 54(12): 3021-3029. DOI: 10.1161/STROKEAHA.123.044297.
[2]
JOCHEMS A C C, MUÑOZ MANIEGA S, CLANCY U, et al. Longitudinal cognitive changes in cerebral small vessel disease: the effect of white matter hyperintensity regression and progression[J/OL]. Neurology, 2025, 104(4): e213323 [2025-03-25]. https://pubmed.ncbi.nlm.nih.gov/39899790/. DOI: 10.1212/WNL.0000000000213323.
[3]
GEORGAKIS M K, DUERING M, WARDLAW J M, et al. WMH and long-term outcomes in ischemic stroke: a systematic review and meta-analysis[J/OL]. Neurology, 2019, 92(12): e1298-e1308 [2025-03-25]. https://pubmed.ncbi.nlm.nih.gov/30770431/. DOI: 10.1212/WNL.0000000000007142.
[4]
DERRAZ I, ABDELRADY M, AHMED R, et al. Impact of white matter hyperintensity burden on outcome in large-vessel occlusion stroke[J]. Radiology, 2022, 304(1): 145-152. DOI: 10.1148/radiol.210419.
[5]
WU X Q, YA J Y, ZHOU D, et al. Pathogeneses and imaging features of cerebral white matter lesions of vascular origins[J]. Aging Dis, 2021, 12(8): 2031-2051. DOI: 10.14336/AD.2021.0414.
[6]
BERNSTEIN M A, HUSTON III J, WARD H A. Imaging artifacts at 3.0T[J]. J Magn Reson Imag, 2006, 24(4): 735-746. DOI: 10.1002/jmri.20698.
[7]
HARTEVELD A A, VAN DER KOLK A G, VAN DER WORP H B, et al. High-resolution intracranial vessel wall MRI in an elderly asymptomatic population: comparison of 3T and 7T[J]. Eur Radiol, 2017, 27(4): 1585-1595. DOI: 10.1007/s00330-016-4483-3.
[8]
LADD M E, BACHERT P, MEYERSPEER M, et al. Pros and cons of ultra-high-field MRI/MRS for human application[J/OL]. Prog Nucl Magn Reson Spectrosc, 2018, 109: 1-50 [2025-03-25]. https://pubmed.ncbi.nlm.nih.gov/30527132/. DOI: 10.1016/j.pnmrs.2018.06.001.
[9]
FENG J Q, LIU X K, ZHANG Z H, et al. Comparison of 7T and 3T vessel wall MRI for the evaluation of intracranial aneurysm wall[J]. Eur Radiol, 2022, 32(4): 2384-2392. DOI: 10.1007/s00330-021-08331-9.
[10]
MARKUS H S, DE LEEUW F E. Cerebral small vessel disease: Recent advances and future directions[J]. Int J Stroke, 2023, 18(1): 4-14. DOI: 10.1177/17474930221144911.
[11]
VAN DEN BRINK H, DOUBAL F N, DUERING M. Advanced MRI in cerebral small vessel disease[J]. Int J Stroke, 2023, 18(1): 28-35. DOI: 10.1177/17474930221091879.
[12]
ZHANG Q, XU X Q, WU F Y. Advances of 7 T ultra-high field magnetic resonance intracranial vessel wall imaging in the etiology classification of ischemic stroke[J]. Chin J Magn Reson Imag, 2024, 15(9): 157-161. DOI: 10.12015/issn.1674-8034.2024.09.027.
[13]
ERTURK M A, LI X F, VAN DE MOORTELE P F, et al. Evolution of UHF body imaging in the human torso at 7T: technology, applications, and future directions[J]. Top Magn Reson Imaging, 2019, 28(3): 101-124. DOI: 10.1097/RMR.0000000000000202.
[14]
LIU C, WANG J. Clinical application advantages, challenges, and future prospects of 7 T MRI[J]. Chin J Magn Reson Imag, 2024, 15(12): 38-41, 47. DOI: 10.12015/issn.1674-8034.2024.12.005.
[15]
YANG X F, ZHEN Z M, CHEN K, et al. Advantages and challenges of 7 T magnetic resonance imaging and typical clinical application for neurological disorders[J]. Chin J Magn Reson Imag, 2024, 15(12): 187-193. DOI: 10.12015/issn.1674-8034.2024.12.029.
[16]
TRATTNIG S, BOGNER W, GRUBER S, et al. Clinical applications at ultrahigh field (7 T). Where does it make the difference?[J]. NMR Biomed, 2016, 29(9): 1316-1334. DOI: 10.1002/nbm.3272.
[17]
ZHANG Y F, YANG C, LIANG L, et al. Preliminary experience of 5.0 T higher field abdominal diffusion-weighted MRI: agreement of apparent diffusion coefficient with 3.0 T imaging[J]. J Magn Reson Imaging, 2022, 56(4): 1009-1017. DOI: 10.1002/jmri.28097.
[18]
SHI Z, ZHAO X, ZHU S, et al. Time-of-flight intracranial MRA at 3 T versus 5 T versus 7 T: visualization of distal small cerebral arteries[J/OL]. Radiology, 2022, 305(3): E72 [2025-03-25]. https://pubmed.ncbi.nlm.nih.gov/36409618/. DOI: 10.1148/radiol.229027.
[19]
XU Q, ZHAO H J, GAO R C, et al. Insulinoma detection and surgery planning: a comparative study of 5.0T MRI versus 3.0T MRI and MDCT[J/OL]. Abdom Radiol (NY), 2024 [2025-03-25]. https://pubmed.ncbi.nlm.nih.gov/39514101/. DOI: 10.1007/s00261-024-04680-3.
[20]
SHI Z, LI H, MIAO X Y, et al. Phase-contrast magnetic resonance angiography of foot at 5T ultra-high field strength 5T: Visualization of distal small vessels and enhancement by warm water immersion[J/OL]. J Cardiovasc Magn Reson, 2024, 26(2): 101114 [2025-03-25]. https://pubmed.ncbi.nlm.nih.gov/39461619/. DOI: 10.1016/j.jocmr.2024.101114.
[21]
LIU J X, WANG Z S, YU D, et al. Comparative analysis of hepatic fat quantification across 5 T, 3 T and 1.5 T: a study on consistency and feasibility[J/OL]. Eur J Radiol, 2024, 180: 111709 [2025-03-25]. https://pubmed.ncbi.nlm.nih.gov/39222564/. DOI: 10.1016/j.ejrad.2024.111709.
[22]
ZHENG L Y, YANG C, LIANG L, et al. T2-weighted MRI and reduced-FOV diffusion-weighted imaging of the human pancreas at 5 T: a comparison study with 3 T[J]. Med Phys, 2023, 50(1): 344-353. DOI: 10.1002/mp.15970.
[23]
LU H F, MIAO X Y, WANG D, et al. Feasibility and clinical application of 5-T noncontrast Dixon whole-heart coronary MR angiography: a prospective study[J/OL]. Radiology, 2024, 313(1): e240389 [2025-03-25]. https://pubmed.ncbi.nlm.nih.gov/39436288/. DOI: 10.1148/radiol.240389.
[24]
LI Z Z, YIN L, SHANG M Y, et al. Comparison on image quality of 5.0T and 3.0T time of flight MR angiography for displaying anterior choroidal arteries[J]. Chin J Med Imag Technol, 2024, 40(5): 653-656. DOI: 10.13929/j.issn.1003-3289.2024.05.004.
[25]
MIAO X Y, SHI Z, HAN S H, et al. 5.0T MR susceptibility weighted imaging for displaying cerebral small veins and detecting cerebral microbleeds[J]. Chin J Med Imag Technol, 2024, 40(5): 657-660. DOI: 10.13929/j.issn.1003-3289.2024.05.005.
[26]
SHI Z, MIAO X Y, ZHU S, et al. The clinical value of 5.0 T ultra-high field MRI in assessing intracranial arteries and branches[J]. Chin J Radiol, 2022, 56(8): 886-891. DOI: 10.3760/cma.j.cn112149-20211224-01142.
[27]
LIN L, LIU P J, SUN G, et al. Bi-ventricular assessment with cardiovascular magnetic resonance at 5 Tesla: a pilot study[J/OL]. Front Cardiovasc Med, 2022, 9: 913707 [2025-03-25]. https://pubmed.ncbi.nlm.nih.gov/36172590/. DOI: 10.3389/fcvm.2022.913707.
[28]
WEI Z D, CHEN Q Y, HAN S H, et al. 5T magnetic resonance imaging: radio frequency hardware and initial brain imaging[J]. Quant Imaging Med Surg, 2023, 13(5): 3222-3240. DOI: 10.21037/qims-22-945.
[29]
THEYSOHN J M, KRAFF O, MADERWALD S, et al. 7 tesla MRI of microbleeds and white matter lesions as seen in vascular dementia[J]. J Magn Reson Imaging, 2011, 33(4): 782-791. DOI: 10.1002/jmri.22513.
[30]
MEI H, LV J F, XU D, et al. 3D time-of-flight magnetic resonance angiography of lenticulostriate artery imaging at 5.0 Tesla: a hierarchic analysis method and clinical applications[J]. Quant Imaging Med Surg, 2025, 15(3): 1768-1783. DOI: 10.21037/qims-24-1554.

PREV Study on the evaluation of cervical medullary compression and activity in craniovertebral junction malformation used dynamic flexion-extension cervical spine MRI
NEXT Application of a single dose of Gadobutrol for evaluating the optimized time window selection of CMR in myocardial infarction patients with normal ejection fraction
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn