Share:
Share this content in WeChat
X
Technical Article
Application of a single dose of Gadobutrol for evaluating the optimized time window selection of CMR in myocardial infarction patients with normal ejection fraction
NAN Jiang  CHEN Zixian  ZHU Bobin  GUO Qihong  LEI Junqiang 

Cite this article as: NAN J, CHEN Z X, ZHU B B, et al. Application of a single dose of Gadobutrol for evaluating the optimized time window selection of CMR in myocardial infarction patients with normal ejection fraction[J]. Chin J Magn Reson Imaging, 2025, 16(6): 122-127, 138. DOI:10.12015/issn.1674-8034.2025.06.018.


[Abstract] Objective To explore the optimal imaging time window for cardiac magnetic resonance (CMR) examination using a single dose of gadobutrol in patients with myocardial infarction and normal ejection fraction.Materials and Methods Forty patients clinically diagnosed with myocardial infarction were prospectively enrolled for CMR examination. Short-axis delayed enhancement images of the left ventricle were obtained at four time periods: 3-6 minutes, 6-9 minutes, 9-12 minutes, and 12-15 minutes after gadobutrol injection. The signal-to-noise ratios (SNR) of normal myocardium (SNRNM), enhanced myocardium (SNREM), and left ventricular blood pool (SNRLV), the contrast-to-noise ratios (CNR) of enhanced myocardium to normal myocardium (CNREM-NM), enhanced myocardium to left ventricular blood pool (CNREM-LV), normal myocardium to left ventricular blood pool (CNRNM-LV), and the area of late gadolinium enhancement (LGE) region were analyzed.Results Subjective evaluation showed that the boundaries between the left ventricular blood pool and the LGE region could be effectively distinguished in all time periods except 3-6 minutes. A comparison within the same time period showed that there was no significant difference in SNREM and SNRLV at 6-9 minutes (P > 0.05), while significant differences were observed in the remaining time periods (P < 0.05). SNRLV was higher than SNREM at 3-6 minutes, and SNRLV was lower than SNREM at both 9-12 minutes and 12-15 minutes. There were significant differences in CNREM-LV and CNRNM-LV in all time periods (P < 0.05). Multiple comparisons across different time periods showed that SNREM and SNRLV were the highest at 3-6 minutes, and there were significant differences compared to the other three groups (P < 0.05). There was no significant difference in SNREM between 6-9 minutes and 9-12 minutes, and between 9-12 minutes and 12-15 minutes (P > 0.05). There were no significant differences in CNREM-NM, CNREM-LV, and LGE area across different time periods (P > 0.05).Conclusions For myocardial infarction patients with normal ejection fraction using a single dose of gadobutrol, the infarcted area can be visualized as early as 3-6 minutes, but it is not conducive to the evaluation of the LGE area. The optimal imaging time window is 6-9 minutes, which can achieve similar myocardial tissue contrast and infarcted myocardium area as the 9-12 minutes and 12-15 minutes.
[Keywords] myocardial infarction;Gadobutrol;cardiac magnetic resonance;late gadolinium enhancement;magnetic resonance imaging

NAN Jiang1, 2, 3, 4, 5, 6   CHEN Zixian1, 2, 3, 4, 5, 6   ZHU Bobin1, 2, 3, 4, 5, 6   GUO Qihong1, 2, 3, 4, 5, 6   LEI Junqiang1, 2, 3, 4, 5, 6*  

1 Department of Radiology, the First Hospital of Lanzhou University, Lanzhou 730000, China

2 The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China

3 The Intelligent Imaging Medicine Industry Technology Center of Gansu Province, Lanzhou 730000, China

4 Intelligent Imaging Medicine Engineering Research Center of Gansu Province,Lanzhou 730000, China

5 Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou 730000, China

6 Gansu Province clinical research center for radiology imaging, Lanzhou 730000, China

Corresponding author: LEI J Q, E-mail: leijq@126.com

Conflicts of interest   None.

Received  2025-03-28
Accepted  2025-06-10
DOI: 10.12015/issn.1674-8034.2025.06.018
Cite this article as: NAN J, CHEN Z X, ZHU B B, et al. Application of a single dose of Gadobutrol for evaluating the optimized time window selection of CMR in myocardial infarction patients with normal ejection fraction[J]. Chin J Magn Reson Imaging, 2025, 16(6): 122-127, 138. DOI:10.12015/issn.1674-8034.2025.06.018.

[1]
SOLER-FERNÁNDEZ R, MÉNDEZ-DÍAZ C, RODRÍGUEZ-GARCÍA E. Extracellular gadolinium-based contrast agents[J/OL]. Radiologia (Engl Ed), 2024, 66(Suppl 2): S51-S64 [2025-03-27]. https://pubmed.ncbi.nlm.nih.gov/39603741/. DOI: 10.1016/j.rxeng.2024.04.004.
[2]
ENDRIKAT J, GUTBERLET M, HOFFMANN K T, et al. Clinical safety of gadobutrol: review of over 25 years of use exceeding 100 million administrations[J]. Invest Radiol, 2024, 59(9): 605-613. DOI: 10.1097/RLI.0000000000001072.
[3]
CLEMENT O, ROMANINI L, VAN DER MOLEN A J, et al. Contrast media safety: update on recent ESUR-Contrast Media Safety Committee publications[J]. Eur Radiol, 2024, 34(11): 7208-7210. DOI: 10.1007/s00330-024-10725-4.
[4]
ZHANG Y, LU L, XU J W, et al. Multi-center study on the prognostic value of cardiac magnetic resonance feature tracking technique for MACE after percutaneous coronary intervention in patients with acute myocardial infarction during hospitalization[J]. Chin J Magn Reson Imag, 2023, 14(5): 123-131. DOI: 10.12015/issn.1674-8034.2023.05.022.
[5]
LIU X, YANG Z G, LI Y. Clinical application and current research status of cardiac magnetic resonance imaging of myocardial infarction[J]. Chin J Magn Reson Imag, 2021, 12(8): 98-100, 107. DOI: 10.12015/issn.1674-8034.2021.08.022.
[6]
POSKAITE P, KREMSER C, PAMMINGER M, et al. Magnetization-transfer flow-independent dark-blood delayed enhancement cardiac MRI optimizes discrimination of ST-elevation myocardial infarct borders[J]. Eur Radiol, 2025, 35(6): 3030-3041. DOI: 10.1007/s00330-024-11192-7.
[7]
MASCI P G, PAVON A G, BERCHIER G, et al. Probing the intravascular and interstitial compartments of remodeled myocardium in heart failure patients with preserved and reduced ejection fraction: a CMR study[J/OL]. BMC Med Imaging, 2019, 19(1): 1 [2025-03-27]. https://pubmed.ncbi.nlm.nih.gov/30611240/. DOI: 10.1186/s12880-018-0301-5.
[8]
KANAGALA P, CHENG A S H, SINGH A, et al. Relationship between focal and diffuse fibrosis assessed by CMR and clinical outcomes in heart failure with preserved ejection fraction[J]. JACC Cardiovasc Imaging, 2019, 12(11Pt 2): 2291-2301. DOI: 10.1016/j.jcmg.2018.11.031.
[9]
MASCI P G, PAVON A G, MULLER O, et al. Relationship between CMR-derived parameters of ischemia/reperfusion injury and the timing of CMR after reperfused ST-segment elevation myocardial infarction[J/OL]. J Cardiovasc Magn Reson, 2018, 20(1): 50 [2025-03-27]. https://pubmed.ncbi.nlm.nih.gov/30037343/. DOI: 10.1186/s12968-018-0474-7.
[10]
OPATRIL L, PANOVSKY R, MACHAL J, et al. Extracellular volume quantification using synthetic haematocrit assessed from native and post-contrast longitudinal relaxation T1 times of a blood pool[J/OL]. BMC Cardiovasc Disord, 2021, 21(1): 363 [2025-03-27]. https://pubmed.ncbi.nlm.nih.gov/34330214/. DOI: 10.1186/s12872-021-02179-z.
[11]
KANIEWSKA M, DEININGER-CZERMAK E, GETZMANN J M, et al. Application of deep learning-based image reconstruction in MR imaging of the shoulder joint to improve image quality and reduce scan time[J]. Eur Radiol, 2023, 33(3): 1513-1525. DOI: 10.1007/s00330-022-09151-1.
[12]
LUO Y, HUANG L, QIAO J H, et al. Grey-blood late gadolinium enhancement cardiac magnetic resonance in improving the detection of myocardial infarction[J]. Chin J Med Imag, 2023, 31(6): 581-586. DOI: 10.3969/j.issn.1005-5185.2023.06.005.
[13]
YANG J, WANG F, WANG Z R, et al. Evaluation of late gadolinium enhancement cardiac MRI using deep learning reconstruction[J]. Acta Radiol, 2023, 64(10): 2714-2721. DOI: 10.1177/02841851231192786.
[14]
WANG C J, SHAN Y, ZHANG Y, et al. Preliminary application of deep learning-based image reconstruction in improving temporomandibular joint MRI image quality[J]. Chin J Magn Reson Imag, 2024, 15(10): 3-7, 21. DOI: 10.12015/issn.1674-8034.2024.10.002.
[15]
HU Y Y, GUO Y, SUN Z, et al. Diagnostic value of cardiac magnetic contrast-enhanced cine sequences in STEMI patients with microvascular obstruction[J]. Chin J Magn Reson Imag, 2024, 15(2): 140-146. DOI: 10.12015/issn.1674-8034.2024.02.021.
[16]
SCHULZ-MENGER J, BLUEMKE D A, BREMERICH J, et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance - 2020 update: Society for Cardiovascular Magnetic Resonance (SCMR): Board of Trustees Task Force on Standardized Post-Processing[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 19 [2025-03-27]. https://pubmed.ncbi.nlm.nih.gov/32160925/. DOI: 10.1186/s12968-020-00610-6.
[17]
LECHNER I, REINDL M, TILLER C, et al. Temporal trends in infarct severity outcomes in ST-segment-elevation myocardial infarction: a cardiac magnetic resonance imaging study[J/OL]. J Am Heart Assoc, 2023, 12(15): e028932 [2025-03-27]. https://pubmed.ncbi.nlm.nih.gov/37489726/. DOI: 10.1161/JAHA.122.028932.
[18]
KRAMER C M, BARKHAUSEN J, BUCCIARELLI-DUCCI C, et al. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 17 [2025-03-27]. https://pubmed.ncbi.nlm.nih.gov/32089132/. DOI: 10.1186/s12968-020-00607-1.
[19]
DONG C H, WANG G, HE Y. Impurities analysis and control strategies of gadobutrol contrast agents[J]. Chin J New Drugs, 2024, 33(23): 2456-2461. DOI: 10.3969/j.issn.1003-3734.2024.23.006.
[20]
WILDGRUBER M, STADLBAUER T, RASPER M, et al. Single-dose gadobutrol in comparison with single-dose gadobenate dimeglumine for magnetic resonance imaging of chronic myocardial infarction at 3 T[J]. Invest Radiol, 2014, 49(11): 728-734. DOI: 10.1097/RLI.0000000000000076.
[21]
Chinese Medical Association Radiology Society Magnetic Resonance Imaging Group, Chinese Medical Association Radiology Society Quality Management and Security Management Group. Clinical application recommendations on safety of gadolinium contrast agents[J]. Chin J Radiol, 2019, 53(7): 539-544. DOI: 10.3760/cma.j.issn.1005-1201.2019.07.002.
[22]
SCOTT L J. Gadobutrol: a review in contrast-enhanced MRI and MRA[J]. Clin Drug Investig, 2018, 38(8): 773-784. DOI: 10.1007/s40261-018-0674-9.
[23]
XU J, ZHAO Q Q, XU Y K. Physical and chemical properties and clinical application of gadolinium butoxide, a high concentration magnetic resonance contrast agent[J]. Radiol Pract, 2016, 31(7): 666-669. DOI: 10.13609/j.cnki.1000-0313.2016.07.021.
[24]
Imaging Technology Branch of Chinese Medical Association, LI Z L, XIA C C. Expert consensus on gadobutrol contrast-enhanced MRI clinical scanning scheme[J]. Chin J Radiol, 2022, 56(9): 950-958. DOI: 10.3760/cma.j.cn112149-20220715-00608.
[25]
ARAI A E, SCHULZ-MENGER J, BERMAN D, et al. Gadobutrol-enhanced cardiac magnetic resonance imaging for detection of coronary artery disease[J]. J Am Coll Cardiol, 2020, 76(13): 1536-1547. DOI: 10.1016/j.jacc.2020.07.060.
[26]
ACR Committee on Drugs and Cotrast Media. ACR Manual on Contrast 2024[EB/OL]. [2025-03-07]. https://www.acr.org/Clinical-Resources/Clinical-Tools-and-Reference/Contrast-Manual.
[27]
STAREKOVA J, PIRASTEH A, REEDER S B. Update on gadolinium-based contrast agent safety, from the AJR special series on contrast media[J/OL]. AJR Am J Roentgenol, 2024, 223(3): e2330036 [2025-03-27]. https://pubmed.ncbi.nlm.nih.gov/37850581/. DOI: 10.2214/AJR.23.30036.
[28]
BI Q, LI H, DU J, et al. Gadolinium deposition in the brain is related to various contrast agents: a matched case-control study[J]. Clin Radiol, 2022, 77(4): 299-306. DOI: 10.1016/j.crad.2021.12.020.
[29]
SHEN X J, CHEN Y Y, YUN H, et al. Gadobutrol in late gadolinium enhancement magnetic resonance imaging on myocardial infarction patients with heart failure[J]. J Clin Radiol, 2024, 43(4): 538-542. DOI: 10.13437/j.cnki.jcr.2024.04.015.
[30]
D'ANGELO T, GRIGORATOS C, MAZZIOTTI S, et al. High-throughput gadobutrol-enhanced CMR: a time and dose optimization study[J/OL]. J Cardiovasc Magn Reson, 2017, 19(1): 83 [2025-03-27]. https://pubmed.ncbi.nlm.nih.gov/29110679/. DOI: 10.1186/s12968-017-0400-4.
[31]
LIU D T, MA X H, ZHAO L, et al. Gadobutrol in delayed gadolinium enhancement magnetic resonance imaging for diagnosing hypertrophic cardiomyopathy[J]. Chin J Med Imag, 2016, 24(5): 337-341. DOI: 10.3969/j.issn.1005-5185.2016.05.005.
[32]
KAWASAKI K, OKUBO T, NAGATARI T, et al. Clinical significance of gadobutrol in magnetic resonance imaging for the detection of myocardial infarction: matched-pair cohort study to compare with gadopentetate dimeglumine at standard dose[J]. Radiol Phys Technol, 2020, 13(3): 306-311. DOI: 10.1007/s12194-020-00569-0.
[33]
HUPPERTZ A, ROHRER M. Gadobutrol, a highly concentrated MR-imaging contrast agent: its physicochemical characteristics and the basis for its use in contrast-enhanced MR angiography and perfusion imaging[J/OL]. Eur Radiol, 2004, 14(Suppl 5): M12-M18 [2025-03-27]. https://pubmed.ncbi.nlm.nih.gov/15457995/. DOI: 10.1007/s10406-004-0048-7.
[34]
KAWEL N, NACIF M, ZAVODNI A, et al. T1 mapping of the myocardium: intra-individual assessment of post-contrast T1 time evolution and extracellular volume fraction at 3T for Gd-DTPA and Gd-BOPTA[J/OL]. J Cardiovasc Magn Reson, 2012, 14(1): 26 [2025-03-27]. https://pubmed.ncbi.nlm.nih.gov/22540153/. DOI: 10.1186/1532-429X-14-26.

PREV A prospective study on the evaluation of white matter hyperintensities based on T2W-FLAIR sequence by 5.0 T MRI
NEXT Imaging findings of supratentorial parenchymal ependymomas with lipomatous differentiation: One case report
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn