Share:
Share this content in WeChat
X
Review
Advances in MRI studies of changes in choroid plexus structure and function in neurodegenerative diseases in MRI research
LI Yuxin  ZHAO Yang  GONG Tao  CHEN Yufan  ZHUO Mengyuan  WANG Guangbin 

Cite this article as: LI Y X, ZHAO Y, GONG T, et al. Advances in MRI studies of changes in choroid plexus structure and function in neurodegenerative diseases in MRI research[J]. Chin J Magn Reson Imaging, 2025, 16(6): 139-143, 149. DOI:10.12015/issn.1674-8034.2025.06.021.


[Abstract] With the accelerating global trend of population aging, the incidence of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) is rising significantly, posing a major public health challenge due to their complex pathogenesis and the current lack of effective early diagnostic tools, which creates substantial obstacles in clinical management. The choroid plexus (ChP), serving as the primary site of cerebrospinal fluid production and a critical component of the blood-cerebrospinal fluid barrier, exhibits structural and functional alterations closely associated with brain microenvironmental imbalance and glymphatic system dysfunction. Extensive laboratory and clinical evidence demonstrates significant changes in the ChP within aging populations and individuals afflicted by neurodegenerative disorders. Consequently, precise assessment of the ChP is critically important for elucidating pathological mechanisms, enabling early diagnosis, and guiding personalized therapeutic strategies in neurodegenerative diseases. However, current understanding of the ChP's role in neurological diseases remains incomplete, and comprehensive systematic reviews are notably lacking. This article systematically reviews the research progress in utilizing MRI technology to evaluate structural and functional changes of the ChP in neurodegenerative diseases, analyzes prevailing challenges in technical application and mechanistic exploration, and proposes future research directions, aiming to provide valuable insights for improving the diagnosis and treatment of these conditions. We contend that future efforts should focus on advancing novel MRI techniques specifically for ChP imaging, elucidating the causal relationships underlying ChP alterations in the pathogenesis of neurological diseases, and exploring the potential of ChP-derived metrics as biomarkers to pave the way for enhanced early diagnosis, disease monitoring, and personalized therapeutic interventions in neurodegenerative disorders.
[Keywords] choroid plexus;magnetic resonance imaging;neurodegenerative diseases;Alzheimer's disease;Parkinson's disease

LI Yuxin1   ZHAO Yang1   GONG Tao1   CHEN Yufan1   ZHUO Mengyuan2   WANG Guangbin1*  

1 Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China

2 Shandong University, Jinan 250012, China

Corresponding author: WANG G B, E-mail: cjr.wangguangbin@vip.163.com

Conflicts of interest   None.

Received  2024-12-12
Accepted  2025-06-06
DOI: 10.12015/issn.1674-8034.2025.06.021
Cite this article as: LI Y X, ZHAO Y, GONG T, et al. Advances in MRI studies of changes in choroid plexus structure and function in neurodegenerative diseases in MRI research[J]. Chin J Magn Reson Imaging, 2025, 16(6): 139-143, 149. DOI:10.12015/issn.1674-8034.2025.06.021.

[1]
JOHANSON C E, STOPA E G, MCMILLAN P N. The Blood–Cerebrospinal Fluid Barrier: Structure and Functional Significance[M]. Methods Mol Biol, 2011, 686: 101-131. DOI: 10.1007/978-1-60761-938-3_4.
[2]
BERGSLAND N, DWYER M G, ZIVADINOV R. Imaging the Choroid Plexus[J]. Mult Scler, 2024, 30(5_suppl): 24-29. DOI: 10.1177/13524585241292965.
[3]
SANTOS C R A, DUARTE A C, COSTA A R, et al. The senses of the choroid plexus[J/OL]. Prog Neurobiol, 2019, 182: 101680 [2024-11-20]. https://doi.org/10.1016/j.pneurobio.2019.101680. DOI: 10.1016/j.pneurobio.2019.101680.
[4]
KAISER K, BRYJA V. Choroid Plexus: The Orchestrator of Long-Range Signalling Within the CNS[J/OL]. Int J Mol Sci, 2020, 21(13): 4760 [2024-11-20]. https://doi.org/10.3390/ijms21134760. DOI: 10.3390/ijms21134760.
[5]
KOMPANÍKOVÁ P, BRYJA V. Regulation of choroid plexus development and its functions[J/OL]. Cell Mol Life Sci, 2022, 79(6): 304 [2024-11-20]. https://doi.org/10.1007/s00018-022-04314-1. DOI: 10.1007/s00018-022-04314-1.
[6]
SOLÁR P, ZAMANI A, KUBÍČKOVÁ L, et al. Choroid plexus and the blood-cerebrospinal fluid barrier in disease[J/OL]. Fluids Barriers CNS, 2020, 17(1): 35 [2024-11-20]. https://doi.org/10.1186/s12987-020-00196-2. DOI: 10.1186/s12987-020-00196-2.
[7]
DANI N, HERBST R H, MCCABE C, et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages[J/OL]. Cell, 2021, 184(11): 3056-3074.e21 [2024-11-20]. https://doi.org/10.1016/j.cell.2021.04.003. DOI: 10.1016/j.cell.2021.04.003.
[8]
SAUNDERS N R, DZIEGIELEWSKA K M, FAME R M, et al. The choroid plexus: a missing link in our understanding of brain development and function[J]. Physiol Rev, 2023, 103(1): 919-956. DOI: 10.1152/physrev.00060.2021.
[9]
LIU R, ZHANG Z, CHEN Y, et al. Choroid plexus epithelium and its role in neurological diseases[J/OL]. Front Mol Neurosci, 2022, 15: 949231 [2024-11-20]. https://doi.org/10.3389/fnmol.2022.949231. DOI: 10.3389/fnmol.2022.949231.
[10]
BITANIHIRWE B K Y, LIZANO P, WOO T W. Deconstructing the functional neuroanatomy of the choroid plexus: an ontogenetic perspective for studying neurodevelopmental and neuropsychiatric disorders[J]. Mol Psychiatry, 2022, 27(9): 3573-3582. DOI: 10.1038/s41380-022-01623-6.
[11]
GELB S, LEHTINEN M K. Snapshot: Choroid plexus brain barrier[J/OL]. Cell, 2023, 186(16): 3522-3522.e1 [2024-11-20]. https://doi.org/10.1016/j.cell.2023.07.015. DOI: 10.1016/j.cell.2023.07.015.
[12]
SHIPLEY F B, DANI N, XU H, et al. Tracking Calcium Dynamics and Immune Surveillance at the Choroid Plexus Blood-Cerebrospinal Fluid Interface[J/OL]. Neuron, 2020, 108(4): 623-639.e10. https://doi.org/10.1016/j.neuron.2020.08.024. DOI: 10.1016/j.neuron.2020.08.024.
[13]
MUNICIO C, CARRERO L, ANTEQUERA D, et al. Choroid Plexus Aquaporins in CSF Homeostasis and the Glymphatic System: Their Relevance for Alzheimer's Disease[J/OL]. Int J Mol Sci, 2023, 24(1): 878 [2024-11-20]. https://doi.org/10.3390/ijms24010878. DOI: 10.3390/ijms24010878.
[14]
HABLITZ L M, NEDERGAARD M. The Glymphatic System: A Novel Component of Fundamental Neurobiology[J]. J Neurosci, 2021, 41(37): 7698-7711. DOI: 10.1523/JNEUROSCI.0619-21.2021.
[15]
SEROT J M, BÉNÉ M C, FOLIGUET B, et al. Morphological alterations of the choroid plexus in late-onset Alzheimer's disease[J]. Acta Neuropathol, 2000, 99(2): 105-108. DOI: 10.1007/PL00007412.
[16]
YALCIN A, CEYLAN M, BAYRAKTUTAN O F, et al. Age and gender related prevalence of intracranial calcifications in CT imaging; data from 12,000 healthy subjects[J]. J Chem Neuroanat, 2016, 78: 20-24. DOI: 10.1016/j.jchemneu.2016.07.008.
[17]
PELLEGRINI L, BONFIO C, CHADWICK J, et al. Human CNS barrier-forming organoids with cerebrospinal fluid production[J/OL]. Science, 2020, 369(6500): eaaz5626 [2024-11-20]. https://doi.org/10.1126/science.aaz5626. DOI: 10.1126/science.aaz5626.
[18]
OTA M, SATO N, NAKAYA M, et al. Relationship between the tau protein and choroid plexus volume in Alzheimer's disease[J]. Neuroreport, 2023, 34(11): 546-550. DOI: 10.1097/WNR.0000000000001923.
[19]
JOHNSON S E, MCKNIGHT C D, LANTS S K, et al. Choroid plexus perfusion and intracranial cerebrospinal fluid changes after angiogenesis[J]. J Cereb Blood Flow Metab, 2020, 40(8): 1658-1671. DOI: 10.1177/0271678X19872563.
[20]
CHEN R L, KASSEM N A, REDZIC Z B, et al. Age-related changes in choroid plexus and blood-cerebrospinal fluid barrier function in the sheep[J]. Exp Gerontol, 2009, 44(4): 289-296. DOI: 10.1016/j.exger.2008.12.004.
[21]
PARK H, KAM T I, DAWSON V L, et al. α-Synuclein pathology as a target in neurodegenerative diseases[J]. Nat Rev Neurol, 2025, 21(1): 32-47. DOI: 10.1038/s41582-024-01043-w.
[22]
ALISCH J S R, KIELY M, TRIEBSWETTER C, et al. Characterization of Age-Related Differences in the Human Choroid Plexus Volume, Microstructural Integrity, and Blood Perfusion Using Multiparameter Magnetic Resonance Imaging[J/OL]. Front Aging Neurosci, 2021, 13: 734992 [2024-11-20]. https://doi.org/10.3389/fnagi.2021.734992. DOI: 10.3389/fnagi.2021.734992.
[23]
TU Y, LI Z, XIONG F, et al. Decreased DTI-ALPS and choroid plexus enlargement in fibromyalgia: a preliminary multimodal MRI study[J]. Neuroradiology, 2023, 65(12): 1749-1755. DOI: 10.1007/s00234-023-03240-8.
[24]
SUN Z, LI C, MUCCIO M, et al. Vascular Aging in the Choroid Plexus: A 7 T Ultrasmall Superparamagnetic Iron Oxide ( USPIO )‐ MRI Study[J]. J Magn Reson Imaging, 2024, 60(6): 2564-2575. DOI: 10.1002/jmri.29381.
[25]
MAEKAWA T, HORI M, MURATA K, et al. Choroid plexus cysts analyzed using diffusion-weighted imaging with short diffusion-time[J]. Magn Reson Imaging, 2019, 57: 323-327. DOI: 10.1016/j.mri.2018.12.010.
[26]
EISMA J J, MCKNIGHT C D, HETT K, et al. Choroid plexus perfusion and bulk cerebrospinal fluid flow across the adult lifespan[J]. J Cereb Blood Flow Metab, 2023, 43(2): 269-280. DOI: 10.1177/0271678X221129101.
[27]
ZHEN Z, ZHANG R, GUI L, et al. Choroid plexus cysts on 7 T MRI: Relationship to aging and neurodegenerative diseases[J/OL]. Alzheimers Dement, 2025, 21(2): e14484 [2024-11-20]. https://doi.org/10.1002/alz.14484. DOI: 10.1002/alz.14484.
[28]
HAACKE E M, LIU S, BUCH S, et al. Quantitative susceptibility mapping: current status and future directions[J]. Magn Reson Imaging, 2015, 33(1): 1-25. DOI: 10.1016/j.mri.2014.09.004.
[29]
CHOI J D, MOON Y, KIM H J, et al. Choroid Plexus Volume and Permeability at Brain MRI within the Alzheimer Disease Clinical Spectrum[J]. Radiology, 2022, 304(3): 635-645. DOI: 10.1148/radiol.212400.
[30]
GRECH-SOLLARS M, HALES P W, MIYAZAKI K, et al. Multi‐centre reproducibility of diffusion MRI parameters for clinical sequences in the brain[J]. NMR Biomed, 2015, 28(4): 468-485. DOI: 10.1002/nbm.3269.
[31]
CHEN X, ROBERTS N, ZHENG Q, et al. Comparison of diffusion tensor imaging (DTI) tissue characterization parameters in white matter tracts of patients with multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD)[J]. Eur Radiol, 2024, 34(8): 5263-5275. DOI: 10.1007/s00330-023-10550-1.
[32]
HASEGAWA S, YOSHIMARU D, HAYASHI N, et al. Analyzing the relationship between specific brain structural changes and the diffusion tensor image analysis along the perivascular space index in idiopathic normal pressure hydrocephalus[J/OL]. J Neurol, 2024, 272(1): 56 [2024-11-20]. https://doi.org/10.1007/s00415-024-12850-y. DOI: 10.1007/s00415-024-12850-y.
[33]
ZHAO L, TASO M, DAI W, et al. Non-invasive measurement of choroid plexus apparent blood flow with arterial spin labeling[J/OL]. Fluids Barriers CNS, 2020, 17(1): 58 [2024-11-20]. https://doi.org/10.1186/s12987-020-00218-z. DOI: 10.1186/s12987-020-00218-z.
[34]
BOUZERAR R, CHAARANI B, GONDRY-JOUET C, et al. Measurement of choroid plexus perfusion using dynamic susceptibility MR imaging: capillary permeability and age-related changes[J]. Neuroradiology, 2013, 55(12): 1447-1454. DOI: 10.1007/s00234-013-1290-2.
[35]
CRAMER S P, HAMROUNI N, SIMONSEN H J, et al. Insights from DCE-MRI: blood-brain barrier permeability in the context of MS relapses and methylprednisolone treatment[J/OL]. Front Neurosci, 2025, 19: 1546236 [2024-11-20]. https://doi.org/10.3389/fnins.2025.1546236. DOI: 10.3389/fnins.2025.1546236.
[36]
SAITO Y, KAMAGATA K, UCHIDA W, et al. The partial volume effect of choroid plexus in pathogenesis of Alzheimer's disease[J]. Alzheimers Dement, 2023, 19(10): 4756-4757 [2024-11-20]. https://doi.org/10.1002/alz.13123. DOI: 10.1002/alz.13123.
[37]
TADAYON E, MORET B, SPRUGNOLI G, et al. Improving Choroid Plexus Segmentation in the Healthy and Diseased Brain: Relevance for Tau-PET Imaging in Dementia[J]. J Alzheimers Dis, 2020, 74(4): 1057-1068. DOI: 10.3233/JAD-190706.
[38]
EISMA J J, MCKNIGHT C D, HETT K, et al. Deep learning segmentation of the choroid plexus from structural magnetic resonance imaging (MRI): validation and normative ranges across the adult lifespan[J/OL]. Res Sq, 2023 [2024-11-20]. https://www.researchsquare.com/article/rs-3338860/v1. DOI: 10.21203/rs.3.rs-3338860/v1.
[39]
ALISCH J S R, EGAN J M, BOUHRARA M. Differences in the choroid plexus volume and microstructure are associated with body adiposity[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 984929 [2024-11-20]. https://doi.org/10.3389/fendo.2022.984929. DOI: 10.3389/fendo.2022.984929.
[40]
LI Y, ZHOU Y, ZHONG W, et al. Choroid Plexus Enlargement Exacerbates White Matter Hyperintensity Growth through Glymphatic Impairment[J]. Ann Neurol, 2023, 94(1): 182-195. DOI: 10.1002/ana.26648.
[41]
HARRISON I F, ISMAIL O, MACHHADA A, et al. Impaired glymphatic function and clearance of tau in an Alzheimer's disease model[J]. Brain, 2020, 143(8): 2576-2593. DOI: 10.1093/brain/awaa179.
[42]
BRKIC M, BALUSU S, VAN WONTERGHEM E, et al. Amyloid β Oligomers Disrupt Blood–CSF Barrier Integrity by Activating Matrix Metalloproteinases[J]. J Neurosci, 2015, 35(37): 12766-12778. DOI: 10.1523/JNEUROSCI.0006-15.2015.
[43]
WEN G Y, WISNIEWSKI H M, KASCSAK R J. Biondi ring tangles in the choroid plexus of Alzheimer's disease and normal aging brains: a quantitative study[J]. Brain Res, 1999, 832(1-2): 40-46. DOI: 10.1016/S0006-8993(99)01466-3.
[44]
TADAYON E, PASCUAL-LEONE A, PRESS D, et al. Choroid plexus volume is associated with levels of CSF proteins: relevance for Alzheimer's and Parkinson's disease[J]. Neurobiol Aging, 2020, 89: 108-117. DOI: 10.1016/j.neurobiolaging.2020.01.005.
[45]
UMEMURA Y, WATANABE K, KASAI S, et al. Choroid plexus enlargement in mild cognitive impairment on MRI: a large cohort study[J]. Eur Radiol, 2024, 34(8): 5297-5304. DOI: 10.1007/s00330-023-10572-9.
[46]
PEARSON M J, WAGSTAFF R, WILLIAMS R J, et al. Choroid plexus volumes and auditory verbal learning scores are associated with conversion from mild cognitive impairment to Alzheimer's disease[J/OL]. Brain Behav, 2024, 14(7): e3611 [2024-11-20]. https://doi.org/10.1002/brb3.3611. DOI: 10.1002/brb3.3611.
[47]
BATES C A, ZHENG W. Brain disposition of α-Synuclein: roles of brain barrier systems and implications for Parkinson's disease[J/OL]. Fluids Barriers CNS, 2014, 11(1): 17 [2024-11-20]. https://doi.org/10.1186/2045-8118-11-17. DOI: 10.1186/2045-8118-11-17.
[48]
BOROUJENI M E, GARDANEH M, SHAHRIARI M H, et al. Synergy Between Choroid Plexus Epithelial Cell-Conditioned Medium and Knockout Serum Replacement Converts Human Adipose-Derived Stem Cells to Dopamine-Secreting Neurons[J]. Rejuvenation Res, 2017, 20(4): 309-319. DOI: 10.1089/rej.2016.1887.
[49]
JEONG S H, PARK C J, JEONG H J, et al. Association of choroid plexus volume with motor symptoms and dopaminergic degeneration in Parkinson's disease[J]. J Neurol Neurosurg Psychiatry, 2023, 94(12): 1047-1055. DOI: 10.1136/jnnp-2023-331170.
[50]
JEONG S H, JEONG H J, SUNWOO M K, et al. Association between choroid plexus volume and cognition in Parkinson disease[J]. Eur J Neurol, 2023, 30(10): 3114-3123. DOI: 10.1111/ene.15999.
[51]
KUNIS G, BARUCH K, MILLER O, et al. Immunization with a Myelin-Derived Antigen Activates the Brain's Choroid Plexus for Recruitment of Immunoregulatory Cells to the CNS and Attenuates Disease Progression in a Mouse Model of ALS[J]. J Neurosci, 2015, 35(16): 6381-6393. DOI: 10.1523/JNEUROSCI.3644-14.2015.
[52]
DAI T, LOU J, KONG D, et al. Choroid plexus enlargement in amyotrophic lateral sclerosis patients and its correlation with clinical disability and blood-CSF barrier permeability[J/OL]. Fluids Barriers CNS, 2024, 21(1): 36 [2024-11-20]. https://doi.org/10.1186/s12987-024-00536-6. DOI: 10.1186/s12987-024-00536-6.
[53]
MAHAD D H, TRAPP B D, LASSMANN H. Pathological mechanisms in progressive multiple sclerosis[J]. Lancet Neurol, 2015, 14(2): 183-193. DOI: 10.1016/S1474-4422(14)70256-X.
[54]
SIMPSON S, PRESTON D, SCHWERK C, et al. Cytokine and inflammatory mediator effects on TRPV4 function in choroid plexus epithelial cells[J/OL]. Am J Physiol Cell Physiol, 2019, 317(5): C881-C893 [2024-11-20]. https://doi.org/10.1152/ajpcell.00205.2019. DOI: 10.1152/ajpcell.00205.2019.
[55]
RICIGLIANO V A G, MORENA E, COLOMBI A, et al. Choroid Plexus Enlargement in Inflammatory Multiple Sclerosis: 3.0-T MRI and Translocator Protein PET Evaluation[J]. Radiology, 2021, 301(1): 166-177. DOI: 10.1148/radiol.2021204426.
[56]
CHEN X, LUO D, ZHENG Q, et al. Enlarged choroid plexus related to cortical atrophy in multiple sclerosis[J]. Eur Radiol, 2022, 33(4): 2916-2926. DOI: 10.1007/s00330-022-09277-2.
[57]
BERGSLAND N, DWYER M G, JAKIMOVSKI D, et al. Association of Choroid Plexus Inflammation on MRI With Clinical Disability Progression Over 5 Years in Patients With Multiple Sclerosis[J/OL]. Neurology, 2023, 100(9): e911-e920 [2024-11-20]. https://www.neurology.org/doi/10.1212/WNL.0000000000201608. DOI: 10.1212/WNL.0000000000201608.
[58]
BRAVI B, MELLONI E M T, PAOLINI M, et al. Choroid plexus volume is increased in mood disorders and associates with circulating inflammatory cytokines[J]. Brain Behav Immun, 2024, 116: 52-61. DOI: 10.1016/j.bbi.2023.11.036.
[59]
LIZANO P, LUTZ O, LING G, et al. Association of Choroid Plexus Enlargement With Cognitive, Inflammatory, and Structural Phenotypes Across the Psychosis Spectrum[J]. Am J Psychiatry, 2019, 176(7): 564-572. DOI: 10.1176/appi.ajp.2019.18070825.

PREV Research progress of functional MRI radiomics in Parkinson,s disease
NEXT Advances in MRI research of thalamic structural and functional alterations in insomnia disorder
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn