Share:
Share this content in WeChat
X
Review
Advances in MRI research of thalamic structural and functional alterations in insomnia disorder
CUI Jiahe  YUE Hongyu  XIE Fangfang  XIE Chaoqun  MA Jianwen  HAN Haotian  YAO Fei 

Cite this article as: CUI J H, YUE H Y, XIE F F, et al. Advances in MRI research of thalamic structural and functional alterations in insomnia disorder[J]. Chin J Magn Reson Imaging, 2025, 16(6): 144-149. DOI:10.12015/issn.1674-8034.2025.06.022.


[Abstract] Insomnia disorder (ID) represents a critical public health issue requiring urgent resolution, characterized by core clinical features including dissatisfaction with sleep duration or quality, and difficulties in sleep initiation or maintenance. The thalamus, a key brain region regulating sleep-wake cycles, plays a crucial role in both wakefulness and sleep. Prior studies have shown structural, functional, and metabolic alterations in the thalamus of individuals with ID. However, these studies often focus on single changes within the ID thalamus, lacking a holistic perspective and a unified understanding of systemic alterations. This review aims to summarize research progress on ID-related thalamic changes, to broaden understanding of thalamic alterations in ID patients and to provide new avenues for future research.
[Keywords] insomnia disorder;thalamus;magnetic resonance imaging;structural magnetic resonance imaging;resting state functional magnetic resonance imaging;arterial spin labeling

CUI Jiahe1   YUE Hongyu1   XIE Fangfang2   XIE Chaoqun2   MA Jianwen2   HAN Haotian2   YAO Fei1, 2, 3*  

1 Department of Tuina, Shanghai municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China

2 School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

3 Department of Tuina, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

Corresponding author: YAO F, E-mail: doctoryaofei@126.com

Conflicts of interest   None.

Received  2025-03-11
Accepted  2025-06-10
DOI: 10.12015/issn.1674-8034.2025.06.022
Cite this article as: CUI J H, YUE H Y, XIE F F, et al. Advances in MRI research of thalamic structural and functional alterations in insomnia disorder[J]. Chin J Magn Reson Imaging, 2025, 16(6): 144-149. DOI:10.12015/issn.1674-8034.2025.06.022.

[1]
Chinese Society of Sleep Disorders. Chinese guideline for diagnosis and treatment of insomnia (2023)[J]. Chin J Neurol, 2024, 57(6): 560-584. DOI: 10.3760/cma.j.cn113694-20240406-00209.
[2]
AERNOUT E, BENRADIA I, HAZO J, et al. International study of the prevalence and factors associated with insomnia in the general population[J]. Sleep Med, 2021, 82: 186-192. DOI: 10.1016/j.sleep.2021.03.028.
[3]
SHAN W, PENG X, TAN W, et al. Prevalence of insomnia and associations with depression, anxiety among adults in guangdong, China: A large-scale cross-sectional study[J]. Sleep Med, 2024, 115: 39-47. DOI: 10.1016/j.sleep.2024.01.023.
[4]
WANG J, WU J, LIU J, et al. Prevalence of sleep disturbances and associated factors among Chinese residents: A web-based empirical survey of 2019[J/OL]. J Glob Health, 2023, 13: 4071 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/37539543/. DOI: 10.7189/jogh.13.04071.
[5]
ONYEGBULE C J, MUOGHALU C G, OFOEGBU C C, et al. The Impact of Poor Sleep Quality on Cardiovascular Risk Factors and Quality of Life[J/OL]. Cureus, 2025, 17(1): e77397 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/39949439/. DOI: 10.7759/cureus.77397.
[6]
PALAGINI L, HERTENSTEIN E, RIEMANN D, et al. Sleep, insomnia and mental health[J/OL]. J Sleep Res, 2022, 31(4): e13628 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/35506356/. DOI: 10.1111/jsr.13628.
[7]
WANG H, REID B M, RICHMOND R C, et al. Impact of insomnia on ovarian cancer risk and survival: a Mendelian randomization study[J/OL]. EBioMedicine, 2024, 104: 105175 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/38823087/. DOI: 10.1016/j.ebiom.2024.105175.
[8]
KHACHATRYAN S G. Insomnia Burden and Future Perspectives[J]. Sleep Med Clin, 2021, 16(3): 513-521. DOI: 10.1016/j.jsmc.2021.05.006.
[9]
ROACH M, JUDAY T, TULY R, et al. Challenges and opportunities in insomnia disorder[J]. Int J Neurosci, 2021, 131(11): 1058-1065. DOI: 10.1080/00207454.2020.1773460.
[10]
LACK L C, MICIC G, LOVATO N. Circadian aspects in the aetiology and pathophysiology of insomnia[J/OL]. J Sleep Res, 2023, 32(6): e13976 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/37537695/. DOI: 10.1111/jsr.13976.
[11]
HUANG L, ZHU W, LI N, et al. Functions and mechanisms of adenosine and its receptors in sleep regulation[J]. Sleep Med, 2024, 115: 210-217. DOI: 10.1016/j.sleep.2024.02.012.
[12]
BORBÉLY A. The two-process model of sleep regulation: Beginnings and outlook[J/OL]. J Sleep Res, 2022, 31(4): e13598 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/35502706/. DOI: 10.1111/jsr.13598.
[13]
GUARALDI P, CALANDRA-BUONAURA G, PROVINI F, et al. Role of Thalamus in Sleep-Wake Cycle Regulation[J/OL]. Ann Neurol, 2019, 85(4): 611 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/30803007/. DOI: 10.1002/ana.25449.
[14]
AQUINO G, BENZ F, DRESSLE R J, et al. Towards the neurobiology of insomnia: A systematic review of neuroimaging studies[J/OL]. Sleep Med Rev, 2024, 73: 101878 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/38056381/. DOI: 10.1016/j.smrv.2023.101878.
[15]
STOLICYN A, LYALL L M, LYALL D M, et al. Comprehensive assessment of sleep duration, insomnia, and brain structure within the UK Biobank cohort[J/OL]. Sleep, 2024, 47(2): zsad274 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/37889226/. DOI: 10.1093/sleep/zsad274.
[16]
WANG Y, YANG J, ZHANG H, et al. Altered morphometric similarity networks in insomnia disorder[J]. Brain Struct Funct, 2024, 229(6): 1433-1445. DOI: 10.1007/s00429-024-02809-0.
[17]
GOTO M, ABE O, HAGIWARA A, et al. Advantages of Using Both Voxel- and Surface-based Morphometry in Cortical Morphology Analysis: A Review of Various Applications[J]. Magn Reson Med Sci, 2022, 21(1): 41-57. DOI: 10.2463/mrms.rev.2021-0096.
[18]
GE X, WANG L, PAN L, et al. Alteration of the cortical morphology in classical trigeminal neuralgia: voxel-, deformation-, and surface-based analysis[J/OL]. J Headache Pain, 2023, 24(1): 17 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/36809919/. DOI: 10.1186/s10194-023-01544-x.
[19]
YUAN J, LIU Y, LIAO H, et al. Alterations in cortical volume and complexity in Parkinson's disease with depression[J/OL]. CNS Neurosci Ther, 2024, 30(2): e14582 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/38421103/. DOI: 10.1111/cns.14582.
[20]
LIU C, KONG X, LIU X, et al. Long-term total sleep deprivation reduces thalamic gray matter volume in healthy men[J]. Neuroreport, 2014, 25(5): 320-323. DOI: 10.1097/WNR.0000000000000091.
[21]
GRAU-RIVERA O, OPERTO G, FALCÓN C, et al. Association between insomnia and cognitive performance, gray matter volume, and white matter microstructure in cognitively unimpaired adults[J/OL]. Alzheimers Res Ther, 2020, 12(1): 4 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/31907066/. DOI: 10.1186/s13195-019-0547-3.
[22]
ALTENA E, VRENKEN H, VAN DER WERF Y D, et al. Reduced orbitofrontal and parietal gray matter in chronic insomnia: a voxel-based morphometric study[J]. Biol Psychiatry, 2010, 67(2): 182-185. DOI: 10.1016/j.biopsych.2009.08.003.
[23]
LI M, YAN J, LI S, et al. Altered gray matter volume in primary insomnia patients: a DARTEL-VBM study[J]. Brain Imaging Behav, 2018, 12(6): 1759-1767. DOI: 10.1007/s11682-018-9844-x.
[24]
CELLE S, DELON-MARTIN C, ROCHE F, et al. Desperately seeking grey matter volume changes in sleep apnea: A methodological review of magnetic resonance brain voxel-based morphometry studies[J]. Sleep Med Rev, 2016, 25: 112-120. DOI: 10.1016/j.smrv.2015.03.001.
[25]
LI M, WANG R, ZHAO M, et al. Abnormalities of thalamus volume and resting state functional connectivity in primary insomnia patients[J]. Brain Imaging Behav, 2019, 13(5): 1193-1201. DOI: 10.1007/s11682-018-9932-y.
[26]
KOO D L, SHIN J, LIM J, et al. Changes in subcortical shape and cognitive function in patients with chronic insomnia[J]. Sleep Med, 2017, 35: 23-26. DOI: 10.1016/j.sleep.2017.04.002.
[27]
PAN X D, WANG Y J, LI M, et al. Age-related differences in the association between sleep disorder characteristics and thalamic subregion volumes in patients with insomnia: based on MRl[J]. J Mol Imaging, 2024, 47(11): 1183-1188. DOI: 10.12122/j.issn.1674-4500.2024.11.05.
[28]
YE X, YANG Y, XU G, et al. Enhanced intrathalamic morphological connectivity in patients with chronic insomnia[J]. Brain Imaging Behav, 2023, 17(1): 114-124. DOI: 10.1007/s11682-022-00747-1.
[29]
BORDES S, WERNER C, MATHKOUR M, et al. Arterial Supply of the Thalamus: A Comprehensive Review[J]. World Neurosurg, 2020, 137: 310-318. DOI: 10.1016/j.wneu.2020.01.237.
[30]
SRIJI S N, AKHTAR N, MALLICK H N. Mediodorsal thalamus lesion increases paradoxical sleep in rats[J]. Sleep Sci, 2021, 14(1): 33-38. DOI: 10.5935/1984-0063.20190155.
[31]
AZIMI H, KLAASSEN A L, THOMAS K, et al. Role of the Thalamus in Basal Forebrain Regulation of Neural Activity in the Primary Auditory Cortex[J]. Cereb Cortex, 2020, 30(8): 4481-4495. DOI: 10.1093/cercor/bhaa045.
[32]
PODWALSKI P, SZCZYGIEŁ K, TYBURSKI E, et al. Magnetic resonance diffusion tensor imaging in psychiatry: a narrative review of its potential role in diagnosis[J]. Pharmacol Rep, 2021, 73(1): 43-56. DOI: 10.1007/s43440-020-00177-0.
[33]
ALBA-FERRARA L M, DE ERAUSQUIN G A. What does anisotropy measure? Insights from increased and decreased anisotropy in selective fiber tracts in schizophrenia[J/OL]. Front Integr Neurosci, 2013, 7: 9 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/23483798/. DOI: 10.3389/fnint.2013.00009.
[34]
LI S, TIAN J, BAUER A, et al. Reduced Integrity of Right Lateralized White Matter in Patients with Primary Insomnia: A Diffusion-Tensor Imaging Study[J]. Radiology, 2016, 280(2): 520-528. DOI: 10.1148/radiol.2016152038.
[35]
SPIEGELHALDER K, REGEN W, PREM M, et al. Reduced anterior internal capsule white matter integrity in primary insomnia[J]. Hum Brain Mapp, 2014, 35(7): 3431-3438. DOI: 10.1002/hbm.22412.
[36]
KANG J M, JOO S W, SON Y, et al. Low white-matter integrity between the left thalamus and inferior frontal gyrus in patients with insomnia disorder[J]. J Psychiatry Neurosci, 2018, 43(6): 366-374. DOI: 10.1503/jpn.170195.
[37]
LIU X, HAN M, LV T, et al. TBSS analysis of white matter fasciculus in chronic insomnia and the relationship with sleep quality and cognitive function[J]. Sleep Biol Rhythms, 2023, 21(4): 467-470. DOI: 10.1007/s41105-023-00468-y.
[38]
OGAWA S, LEE T M, KAY A R, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation[J]. Proc Natl Acad Sci U S A, 1990, 87(24): 9868-9872. DOI: 10.1073/pnas.87.24.9868.
[39]
GUO Y, CHEN Y, SHAO Y, et al. Thalamic network under wakefulness after sleep onset and its coupling with daytime fatigue in insomnia disorder: An EEG-fMRI study[J]. J Affect Disord, 2023, 334: 92-99. DOI: 10.1016/j.jad.2023.04.100.
[40]
CHEN Z W, JIANG G H, YE Q, et al. Research progress of resting-state functional magnetic resonance imaging in the brain function of insomnia disorder[J]. Chin J Magn Reson Imag, 2023, 14(01): 151-155. DOI: 10.12015/issn.1674-8034.2023.01.028.
[41]
PEREIRA M, CHEN X, PALTARZHYTSKAYA A, et al. Sleep neuroimaging: Review and future directions[J/OL]. J Sleep Res, 2025: e14462 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/39940102/. DOI: 10.1111/jsr.14462.
[42]
LIU C, LIU C, ZHANG J, et al. Reduced spontaneous neuronal activity in the insular cortex and thalamus in healthy adults with insomnia symptoms[J]. Brain Res, 2016, 1648(Pt A): 317-324. DOI: 10.1016/j.brainres.2016.07.024.
[43]
KIM N, WON E, CHO S, et al. Thalamocortical functional connectivity in patients with insomnia using resting-state fMRI[J/OL]. J Psychiatry Neurosci, 2021, 46(6): E639-E646 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/34815270/. DOI: 10.1503/jpn.210066.
[44]
MA X, FU S, XU G, et al. Reduced left lateralized functional connectivity of the thalamic subregions between short-term and chronic insomnia disorder[J]. Sleep Biol Rhythms, 2022, 20(2): 229-237. DOI: 10.1007/s41105-021-00362-5.
[45]
REN X H, LIU Y L, WANG J L, et al. Changes in whole-brain functional connectivity density in primary insomnia based on resting state functional MRl[J]. Chin J Med Imaging, 2023, 31(12): 1244-1249. DOI: 10.3969/j.issn.1005-5185.2023.12.002.
[46]
ZHU Y, ZHAO X, YIN H, et al. Functional connectivity density abnormalities and anxiety in primary insomnia patients[J]. Brain Imaging Behav, 2021, 15(1): 114-121. DOI: 10.1007/s11682-019-00238-w.
[47]
WANG H, LI H, LIU Z, et al. Abnormal sensory processing cortex in insomnia disorder: a degree centrality study[J/OL]. Brain Imaging Behav, 2025 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/39825157/. DOI: 10.1007/s11682-024-00958-8.
[48]
ZHAO B, BI Y, CHEN Y, et al. Altered functional connectivity of the thalamus in patients with insomnia disorder after transcutaneous auricular vagus nerve stimulation therapy[J/OL]. Front Neurol, 2023, 14: 1164869 [2023-07-06]. https://pubmed.ncbi.nlm.nih.gov/37483453/. DOI: 10.3389/fneur.2023.1164869.
[49]
JIANG T F, CHEN Z Y, LIU J, et al. Acupuncture modulates emotional network resting-state functional connectivity in patients with insomnia disorder: a randomized controlled trial and fMRI study[J/OL]. BMC Complement Med Ther, 2024, 24(1): 311 [2023-07-06]. https://pubmed.ncbi.nlm.nih.gov/39169368/. DOI: 10.1186/s12906-024-04612-0.
[50]
KOOLSCHIJN R S, CLARKE W T, IP I B, et al. Event-related functional magnetic resonance spectroscopy[J/OL]. Neuroimage, 2023, 276: 120194 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/37244321/. DOI: 10.1016/j.neuroimage.2023.120194.
[51]
SACCARO L F, TASSONE M, TOZZI F, et al. Proton magnetic resonance spectroscopy of N-acetyl aspartate in first depressive episode and chronic major depressive disorder: A systematic review and meta-analysis[J]. J Affect Disord, 2024, 355: 265-282. DOI: 10.1016/j.jad.2024.03.150.
[52]
ROSCHEL H, GUALANO B, OSTOJIC S M, et al. Creatine Supplementation and Brain Health[J/OL]. Nutrients, 2021, 13(2): 586 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/33578876/. DOI: 10.3390/nu13020586.
[53]
MUELLER C, NENERT R, CATIUL C, et al. Brain metabolites are associated with sleep architecture and cognitive functioning in older adults[J/OL]. Brain Commun, 2024, 6(4): fcae245 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/39104903/. DOI: 10.1093/braincomms/fcae245.
[54]
JIANG H Z, WEI S S, HU J, et al. Progress in neurotransmitters related to sleep-wakefuiness[J]. Chin J Pathophysiol, 2023, 39(7): 1310-1317. DOI: 10.3969/j.issn.1000-4718.2023.07.019.
[55]
SU X Y, ZHAO L P, XIE Y P, et al. Study on thecerebrum metabolism in Pl patients using magnetic resonance spectroscopy[J]. Chin J Magn Reson Imag, 2022, 13(2): 47-51. DOI: 10.12015/issn.1674-8034.2022.02.010.
[56]
WINKELMAN J W, BUXTON O M, JENSEN J E, et al. Reduced brain GABA in primary insomnia: preliminary data from 4T proton magnetic resonance spectroscopy (1H-MRS)[J]. Sleep, 2008, 31(11): 1499-1506. DOI: 10.1093/sleep/31.11.1499.
[57]
PLANTE D T, JENSEN J E, SCHOERNING L, et al. Reduced γ-aminobutyric acid in occipital and anterior cingulate cortices in primary insomnia: a link to major depressive disorder?[J]. Neuropsychopharmacology, 2012, 37(6): 1548-1557. DOI: 10.1038/npp.2012.4.
[58]
FAN X, MAO X, YU P, et al. Sleep disturbance impaired memory consolidation via lateralized disruption of metabolite in the thalamus and hippocampus: A cross-sectional proton magnetic resonance spectroscopy study[J]. J Alzheimers Dis, 2024, 102(4): 1057-1073. DOI: 10.1177/13872877241295401.
[59]
JAAFAR N, ALSOP D C. Arterial Spin Labeling: Key Concepts and Progress Towards Use as a Clinical Tool[J]. Magn Reson Med Sci, 2024, 23(3): 352-366. DOI: 10.2463/mrms.rev.2024-0013.
[60]
AL-SHAMA R F M, ULEMAN J F, PEREIRA M, et al. Cerebral blood flow in sleep: A systematic review and meta-analysis[J/OL]. Sleep Med Rev, 2024, 77: 101977 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/39096646/. DOI: 10.1016/j.smrv.2024.101977.
[61]
LUO X W, LI Q X, SHEN L S, et al. Quantitative association of cerebral blood flow, relaxation times and proton density in young and middle-aged primary insomnia patients: A prospective study using three-dimensional arterial spin labeling and synthetic magnetic resonance imaging[J/OL]. Front Neurosci, 2023, 17: 1099911 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/37025376/. DOI: 10.3389/fnins.2023.1099911.
[62]
WANG X L, LI L L, HAN B, et al. Characteristics of cerebral blood flow in sleep deprivation based on arterial spin labeling[J]. Chin J Med Imaging, 2024, 32(7): 653-658. DOI: 10.3969/j.issn.1005-5185.2024.07.003.
[63]
ELVSÅSHAGEN T, MUTSAERTS H J, ZAK N, et al. Cerebral blood flow changes after a day of wake, sleep, and sleep deprivation[J]. Neuroimage, 2019, 186: 497-509. DOI: 10.1016/j.neuroimage.2018.11.032.
[64]
HUANG G, FANG Y, ZHANG W, et al. Altered thalamic functional connectivity and cerebral blood flow in insomnia disorder: a resting-state functional magnetic resonance imaging study[J]. Clin Imaging, 2022, 88: 17-23. DOI: 10.1016/j.clinimag.2022.04.015.

PREV Advances in MRI studies of changes in choroid plexus structure and function in neurodegenerative diseases in MRI research
NEXT Research progress on brain structure and resting-state functional magnetic resonance imaging in patients with cancer pain
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn