Share:
Share this content in WeChat
X
Review
Research progress of LGE-CMR entropy in cardiomyopathy
MA Yunting  LI Qingqin  XIAO Ruiyao  CHEN Siwen  ZHAO Xinxiang 

Cite this article as: MA Y T, LI Q Q, XIAO R Y, et al. Research progress of LGE-CMR entropy in cardiomyopathy[J]. Chin J Magn Reson Imaging, 2025, 16(6): 158-163. DOI:10.12015/issn.1674-8034.2025.06.024.


[Abstract] Cardiomyopathy is a complex and heterogeneous disease, including ischemic cardiomyopathy (ICM) and non-ischemic cardiomyopathy (NICM). Myocardial fibrosis is a common pathological and physiological process in both ICM and NICM, closely related to the progression of heart failure (HF), the risk of sudden death, reduced cardiac function, and arrhythmias. Entropy parameters based on cardiac magnetic resonance (CMR) texture analysis provide a new method for evaluating myocardial tissue heterogeneity. Entropy analysis can quantify the gray-scale distribution characteristics that cannot be identified by traditional imaging, thereby revealing more detailed myocardial histological information. Currently, late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) entropy analysis has achieved significant progress in disease phenotype differentiation, risk stratification, and prognosis assessment in patients with ICM and NICM, and shows good clinical application potential. This article explores the definition of entropy and its research progress in cardiomyopathy, and looks forward to the future development direction, with the aim of providing new ideas for the clinical diagnosis, treatment and prognosis of cardiomyopathy.
[Keywords] cardiomyopathy;magnetic resonance imaging;late gadolinium enhancement cardiac magnetic resonance;entropy;major adverse cardiac events;prognosis

MA Yunting1   LI Qingqin1   XIAO Ruiyao1   CHEN Siwen2   ZHAO Xinxiang2*  

1 Department of Radiology, Panzhihua Municipal Central Hospital, Panzhihua 617067, China

2 Department of Radiology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China

Corresponding author: ZHAO X X, E-mail: zhaoxinxiang06@126.com

Conflicts of interest   None.

Received  2025-04-01
Accepted  2025-06-10
DOI: 10.12015/issn.1674-8034.2025.06.024
Cite this article as: MA Y T, LI Q Q, XIAO R Y, et al. Research progress of LGE-CMR entropy in cardiomyopathy[J]. Chin J Magn Reson Imaging, 2025, 16(6): 158-163. DOI:10.12015/issn.1674-8034.2025.06.024.

[1]
HAMMERSLEY D J, ZEGARD A, ANDROULAKIS E, et al. Arrhythmic risk stratification by cardiovascular magnetic resonance imaging in patients with nonischemic cardiomyopathy[J]. J Am Coll Cardiol, 2024, 84(15): 1407-1420. DOI: 10.1016/j.jacc.2024.06.046.
[2]
CAFORIO A L P, KASKI J P, GIMENO J R, et al. Endomyocardial biopsy: safety and prognostic utility in paediatric and adult myocarditis in the European Society of Cardiology EURObservational Research Programme Cardiomyopathy and Myocarditis Long-Term Registry[J]. Eur Heart J, 2024, 45(28): 2548-2569. DOI: 10.1093/eurheartj/ehae169.
[3]
PONTONE G, GUARICCI A I, FUSINI L, et al. Cardiac magnetic resonance for prophylactic implantable-cardioverter defibrillator therapy in ischemic cardiomyopathy: the DERIVATE-ICM international registry[J]. JACC Cardiovasc Imaging, 2023, 16(11): 1387-1400. DOI: 10.1016/j.jcmg.2023.03.015.
[4]
UNGER A, GAROT J, TOUPIN S, et al. Prognostic value of cardiac MRI late gadolinium enhancement granularity in participants with ischemic cardiomyopathy[J/OL]. Radiology, 2025, 314(1): e240806 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/39772797/. DOI: 10.1148/radiol.240806.
[5]
OMMEN S R, MITAL S, BURKE M A, et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: executive summary: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines[J]. J Am Coll Cardiol, 2020, 76(25): 3022-3055. DOI: 10.1016/j.jacc.2020.08.044.
[6]
ANDROULAKIS A F A, ZEPPENFELD K, PAIMAN E H M, et al. Entropy as a novel measure of myocardial tissue heterogeneity for prediction of ventricular arrhythmias and mortality in post-infarct patients[J]. JACC Clin Electrophysiol, 2019, 5(4): 480-489. DOI: 10.1016/j.jacep.2018.12.005.
[7]
GAO Y, LIU M X, JU Z G, et al. Entropy as a novel predictor of cardiovascular events in patients with left ventricular noncompaction[J/OL]. Int J Cardiol, 2023, 392: 131279 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/37598912/. DOI: 10.1016/j.ijcard.2023.131279.
[8]
ZHAO X Y, JIN F W, WANG J, et al. Entropy of left ventricular late gadolinium enhancement and its prognostic value in hypertrophic cardiomyopathy a new CMR assessment method[J/OL]. Int J Cardiol, 2023, 373: 134-141 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/36395920/. DOI: 10.1016/j.ijcard.2022.11.017.
[9]
SHANNON C E. A mathematical theory of communication[J]. Bell Syst Tech J, 1948, 27(3): 379-423. DOI: 10.1002/j.1538-7305.1948.tb01338.x.
[10]
MENDONCA COSTA C, PLANK G, RINALDI C A, et al. Modeling the electrophysiological properties of the infarct border zone[J/OL]. Front Physiol, 2018, 9: 356 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/29686626/. DOI: 10.3389/fphys.2018.00356.
[11]
WANG L J, PENG L, ZHAO X Y, et al. Prognostic value of entropy derived from late gadolinium enhancement images to adverse cardiac events in post-myocardial infarction patients[J]. Acad Radiol, 2023, 30(2): 239-247. DOI: 10.1016/j.acra.2022.03.021.
[12]
WANG L J. Prognostic value of mitral annular plane systolic excursion and entropy derived from cardiac magnetic resonance to major adverse cardiovascular events in post-myocardial infarction patients[D]. Kunming: Kunming Medical University, 2022. DOI: 10.27202/d.cnki.gkmyc.2022.000325.
[13]
DE CATERINA R, LIGA R, BODEN W E. Myocardial revascularization in ischaemic cardiomyopathy: routine practice vs. scientific evidence[J]. Eur Heart J, 2022, 43(5): 387-390. DOI: 10.1093/eurheartj/ehab680.
[14]
BAWASKAR P, THOMAS N, ISMAIL K, et al. Nonischemic or dual cardiomyopathy in patients with coronary artery disease[J]. Circulation, 2024, 149(11): 807-821. DOI: 10.1161/CIRCULATIONAHA.123.067032.
[15]
WANG B Z, MORSINK M A, KIM S W, et al. Cardiac fibroblast BAG3 regulates TGFBR2 signaling and fibrosis in dilated cardiomyopathy[J/OL]. J Clin Invest, 2025, 135(1): e181630 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/39744939/. DOI: 10.1172/JCI181630.
[16]
AMONI M, DRIES E, INGELAERE S, et al. Ventricular arrhythmias in ischemic cardiomyopathy: new avenues for mechanism-guided treatment[J/OL]. Cells, 2021, 10(10): 2629 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/34685609/. DOI: 10.3390/cells10102629.
[17]
HAO Y T, DING L L, WAN Y B, et al. Analysis of the influencing factors of MACE within 6 months after pPCI in acute STEMI patients and construction of risk prediction Nomogram model[J]. J Math Med, 2024, 37(2): 108-118. DOI: 10.12173/j.issn.1004-4337.202310106.
[18]
LIU S N, JING L H, WU X. Predictive value of miR-150 for major adverse cardiovascular events within 6 months after percutaneous coronary intervention in patients with acute ST-segment elevation myocardial infarction[J]. Chin J Arterioscler, 2020, 28(6): 527-532. DOI: 10.3969/j.issn.1007-3949.2020.06.013.
[19]
WANG W X, GAO Y, WANG J, et al. Left ventricular entropy is a novel predictor of major adverse cardiac events (MACE) in patients with coronary atherosclerosis: a multi-center study[J]. Eur Radiol, 2024, 34(5): 3411-3421. DOI: 10.1007/s00330-023-10362-3.
[20]
ZHAO X Y, ZHAO X X, JIN F W, et al. Prognostic value of cardiac-MRI scar heterogeneity combined with left ventricular strain in patients with myocardial infarction[J]. J Magn Reson Imaging, 2023, 58(2): 466-476. DOI: 10.1002/jmri.28478.
[21]
KWON D H, ASAMOTO L, POPOVIC Z B, et al. Infarct characterization and quantification by delayed enhancement cardiac magnetic resonance imaging is a powerful independent and incremental predictor of mortality in patients with advanced ischemic cardiomyopathy[J]. Circ Cardiovasc Imaging, 2014, 7(5): 796-804. DOI: 10.1161/CIRCIMAGING.114.002077.
[22]
ARBELO E, PROTONOTARIOS A, GIMENO J R, et al. 2023 ESC guidelines for the management of cardiomyopathies[J]. Eur Heart J, 2023, 44(37): 3503-3626. DOI: 10.1093/eurheartj/ehad194.
[23]
ZHANG X Y, CAI J, LI X H, et al. Left ventricular hypertrophy with cardiomyocyte atrophy and extensive interstitial fibrosis: a mitochondrial cardiomyopathy[J/OL]. Eur Heart J, 2023, 44(7): 627 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/36424841/. DOI: 10.1093/eurheartj/ehac672.
[24]
NAKAMORI S, AMYAR A, FAHMY A S, et al. Cardiovascular magnetic resonance radiomics to identify components of the extracellular matrix in dilated cardiomyopathy[J]. Circulation, 2024, 150(1): 7-18. DOI: 10.1161/CIRCULATIONAHA.123.067107.
[25]
EICHHORN C, KOECKERLING D, REDDY R K, et al. Risk stratification in nonischemic dilated cardiomyopathy using CMR imaging: a systematic review and meta-analysis[J]. JAMA, 2024, 332(18): 1535-1550. DOI: 10.1001/jama.2024.13946.
[26]
HAMMERSLEY D J, MUKHOPADHYAY S, CHEN X Y, et al. Precision prediction of heart failure events in patients with dilated cardiomyopathy and mildly reduced ejection fraction using multi-parametric cardiovascular magnetic resonance[J]. Eur J Heart Fail, 2024, 26(12): 2553-2562. DOI: 10.1002/ejhf.3425.
[27]
HEYMANS S, LAKDAWALA N K, TSCHÖPE C, et al. Dilated cardiomyopathy: causes, mechanisms, and current and future treatment approaches[J]. Lancet, 2023, 402(10406): 998-1011. DOI: 10.1016/S0140-6736(23)01241-2.
[28]
POLOVINA M, TSCHÖPE C, ROSANO G, et al. Incidence, risk assessment and prevention of sudden cardiac death in cardiomyopathies[J]. Eur J Heart Fail, 2023, 25(12): 2144-2163. DOI: 10.1002/ejhf.3076.
[29]
ABDIN A, ANKER S D, BUTLER J, et al. 'Time is prognosis' in heart failure: time-to-treatment initiation as a modifiable risk factor[J]. ESC Heart Fail, 2021, 8(6): 4444-4453. DOI: 10.1002/ehf2.13646.
[30]
LI S, WANG Y N, YANG W J, et al. Cardiac MRI risk stratification for dilated cardiomyopathy with left ventricular ejection fraction of 35% or higher[J/OL]. Radiology, 2023, 306(3): e213059 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/36318031/. DOI: 10.1148/radiol.213059.
[31]
DI MARCO A, BROWN P F, BRADLEY J, et al. Improved risk stratification for ventricular arrhythmias and sudden death in patients with nonischemic dilated cardiomyopathy[J]. J Am Coll Cardiol, 2021, 77(23): 2890-2905. DOI: 10.1016/j.jacc.2021.04.030.
[32]
EVERETT R J, STIRRAT C G, SEMPLE S R, et al. Assessment of myocardial fibrosis with T1 mapping MRI[J]. Clin Radiol, 2016, 71(8): 768-778. DOI: 10.1016/j.crad.2016.02.013.
[33]
LIU D, WANG M, MURTHY V, et al. Myocardial recovery in recent onset dilated cardiomyopathy: role of CDCP1 and cardiac fibrosis[J]. Circ Res, 2023, 133(10): 810-825. DOI: 10.1161/CIRCRESAHA.123.323200.
[34]
HAMMERSLEY D J, JONES R E, OWEN R, et al. Phenotype, outcomes and natural history of early-stage non-ischaemic cardiomyopathy[J]. Eur J Heart Fail, 2023, 25(11): 2050-2059. DOI: 10.1002/ejhf.3037.
[35]
MUTHALALY R G, KWONG R Y, JOHN R M, et al. Left ventricular entropy is a novel predictor of arrhythmic events in patients with dilated cardiomyopathy receiving defibrillators for primary prevention[J]. JACC Cardiovasc Imaging, 2019, 12(7Pt 1): 1177-1184. DOI: 10.1016/j.jcmg.2018.07.003.
[36]
GOULD J, PORTER B, SIDHU B S, et al. High mean entropy calculated from cardiac MRI texture analysis is associated with antitachycardia pacing failure[J]. Pacing Clin Electrophysiol, 2020, 43(7): 737-745. DOI: 10.1111/pace.13969.
[37]
GOULD J, PORTER B, CLARIDGE S, et al. Mean entropy predicts implantable cardioverter-defibrillator therapy using cardiac magnetic resonance texture analysis of scar heterogeneity[J]. Heart Rhythm, 2019, 16(8): 1242-1250. DOI: 10.1016/j.hrthm.2019.03.001.
[38]
YE Y, JI Z P, ZHOU W L, et al. Mean scar entropy by late gadolinium enhancement cardiac magnetic resonance is associated with ventricular arrhythmias events in hypertrophic cardiomyopathy[J/OL]. Front Cardiovasc Med, 2021, 8: 758635 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/34869672/. DOI: 10.3389/fcvm.2021.758635.
[39]
BAXI A J, RESTREPO C S, VARGAS D, et al. Hypertrophic cardiomyopathy from a to Z: genetics, pathophysiology, imaging, and management[J]. Radiographics, 2016, 36(2): 335-354. DOI: 10.1148/rg.2016150137.
[40]
KASKI J P, NORRISH G, BLANES J R G, et al. Cardiomyopathies in children and adolescents: aetiology, management, and outcomes in the European society of cardiology EURObservational research programme cardiomyopathy and myocarditis registry[J]. Eur Heart J, 2024, 45(16): 1443-1454. DOI: 10.1093/eurheartj/ehae109.
[41]
COLEMAN J A, DOSTE R, ASHKIR Z, et al. Mechanisms of ischaemia-induced arrhythmias in hypertrophic cardiomyopathy: a large-scale computational study[J]. Cardiovasc Res, 2024, 120(8): 914-926. DOI: 10.1093/cvr/cvae086.
[42]
CHAN R H, VAN DER WAL L, LIBERATO G, et al. Myocardial scarring and sudden cardiac death in young patients with hypertrophic cardiomyopathy: a multicenter cohort study[J]. JAMA Cardiol, 2024, 9(11): 1001-1008. DOI: 10.1001/jamacardio.2024.2824.
[43]
KIAOS A, DASKALOPOULOS G N, KAMPERIDIS V, et al. Quantitative late gadolinium enhancement cardiac magnetic resonance and sudden death in hypertrophic cardiomyopathy: a meta-analysis[J]. JACC Cardiovasc Imaging, 2024, 17(5): 489-497. DOI: 10.1016/j.jcmg.2023.07.005.
[44]
FAHMY A S, ROWIN E J, JAAFAR N, et al. Radiomics of late gadolinium enhancement reveals prognostic value of myocardial scar heterogeneity in hypertrophic cardiomyopathy[J]. JACC Cardiovasc Imaging, 2024, 17(1): 16-27. DOI: 10.1016/j.jcmg.2023.05.003.
[45]
WANG J X, YANG S J, MA X, et al. Assessment of late gadolinium enhancement in hypertrophic cardiomyopathy improves risk stratification based on current guidelines[J]. Eur Heart J, 2023, 44(45): 4781-4792. DOI: 10.1093/eurheartj/ehad581.
[46]
MENTIAS A, RAEISI-GIGLOU P, SMEDIRA N G, et al. Late gadolinium enhancement in patients with hypertrophic cardiomyopathy and preserved systolic function[J]. J Am Coll Cardiol, 2018, 72(8): 857-870. DOI: 10.1016/j.jacc.2018.05.060.
[47]
ZHENG Y, MA Y T, SHA L H, et al. Prediction of MACE in patients with hypertrophic cardiomyopathy by left ventricular entropy based on CMR-LGE image[J]. J Clin Radiol, 2024, 43(2): 217-222. DOI: 10.13437/j.cnki.jcr.2024.02.016.
[48]
ROSS S B, JONES K, BLANCH B, et al. A systematic review and meta-analysis of the prevalence of left ventricular non-compaction in adults[J]. Eur Heart J, 2020, 41(14): 1428-1436. DOI: 10.1093/eurheartj/ehz317.
[49]
MA Y T, WANG L J, ZHAO X Y, et al. Can left ventricular entropy by cardiac magnetic resonance late gadolinium enhancement be a prognostic predictor in patients with left ventricular non-compaction?[J]. Diagn Interv Radiol, 2023, 29(5): 682-690. DOI: 10.4274/dir.2023.221859.
[50]
ZHAO X Y, ZHANG L, WANG L J, et al. Magnetic resonance imaging quantification of left ventricular mechanical dispersion and scar heterogeneity optimize risk stratification after myocardial infarction[J/OL]. BMC Cardiovasc Disord, 2025, 25(1): 2 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/39755625/. DOI: 10.1186/s12872-024-04451-4.
[51]
KURONUMA K, MILLER R J H, OTAKI Y, et al. Prognostic value of phase analysis for predicting adverse cardiac events beyond conventional single-photon emission computed tomography variables: results from the REFINE SPECT registry[J/OL]. Circ Cardiovasc Imaging, 2021, 14(7): e012386 [2025-03-30]. https://pubmed.ncbi.nlm.nih.gov/34281372/. DOI: 10.1161/CIRCIMAGING.120.012386.

PREV Research progress on brain structure and resting-state functional magnetic resonance imaging in patients with cancer pain
NEXT Advances in the application of multimodal cardiac magnetic resonance in the etiological analysis of left heart failure
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn