Share:
Share this content in WeChat
X
Review
Advances in the application of multimodal cardiac magnetic resonance in the etiological analysis of left heart failure
GENG Qiqi  LIU Xiaofei  TIAN Chunmei  DONG Lijie  CHEN Liang  ZHANG Lin  YU Mengmeng 

Cite this article as: GENG Q Q, LIU X F, TIAN C M, et al. Advances in the application of multimodal cardiac magnetic resonance in the etiological analysis of left heart failure[J]. Chin J Magn Reson Imaging, 2025, 16(6): 164-170. DOI:10.12015/issn.1674-8034.2025.06.025.


[Abstract] Heart failure is a complex clinical syndrome. Among them, left heart failure is the most common type of heart failure, with a high prevalence and mortality rate. However, the causes of heart failure are numerous, and identifying the underlying causes has always been a major challenge in clinical practice. Cardiovascular magnetic resonance (CMR) can non-invasively assess multiple aspects of information such as cardiac structure, function, and myocardial characteristics, and has already become an important indicator for the diagnosis and prognosis of heart failure. However, due to the limitations of spatial and temporal resolution, CMR still has deviations in the precise assessment of cardiac microstructure and dynamic function, and the sensitivity for detecting certain specific pathologies still needs to be improved. This article summarizes the application progress of new CMR techniques in the etiological diagnosis of heart failure, aiming to deeply explore the characteristic manifestations of heart failure caused by different etiologies on various CMR sequences, so as to improve the early detection rate, provide imaging evidence for clinical diagnosis and treatment, and is expected to offer references for future research.
[Keywords] heart failure;left heart failure;cardiac magnetic resonance imaging;multimodal magnetic resonance imaging;etiological analysis;diagnose

GENG Qiqi1   LIU Xiaofei1   TIAN Chunmei2   DONG Lijie1   CHEN Liang1   ZHANG Lin1   YU Mengmeng1*  

1 Department of Radiology, Binzhou Medical University Hospital, Binzhou 256603, China

2 Department of Pediatrics, Binzhou Medical University Hospital, Binzhou 256603, China

Corresponding author: YU M M, E-mail: yumengmeng126@126.com

Conflicts of interest   None.

Received  2025-02-06
Accepted  2025-06-05
DOI: 10.12015/issn.1674-8034.2025.06.025
Cite this article as: GENG Q Q, LIU X F, TIAN C M, et al. Advances in the application of multimodal cardiac magnetic resonance in the etiological analysis of left heart failure[J]. Chin J Magn Reson Imaging, 2025, 16(6): 164-170. DOI:10.12015/issn.1674-8034.2025.06.025.

[1]
National Cardiovascular Center, National Cardiovascular Expert Committee, Heart Failure Professional Committee, Chinese Medical Doctor Association, et al. National guide 2023 heart failure[J] Heart Failure and Cardiomyopathy Magazine, 2023, 7(4): 215-311. DOI: 10.3760/cma.J.iSSN.101460-20231209-00052.
[2]
KHAN M S, SHAHID I, BENNIS A, et al. Global epidemiology of heart failure[J]. Nat Rev Cardiol, 2024, 21(10): 717-734. DOI: 10.1038/s41569-024-01046-6.
[3]
HEIDENREICH P A, BOZKURT B, AGUILAR D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines[J/OL]. J Am Coll Cardiol, 2022, 79(17): e263-e421 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/35379503/. DOI: 10.1016/j.jacc.2021.12.012.
[4]
KANAGALA P, LEE J, KHAN-KHEIL M M, et al. Role of cardiac magnetic resonance imaging in heart failure[J]. Kardiol Pol, 2022, 80(3): 251-253. DOI: 10.33963/KP.a2022.0026.
[5]
MCDONAGH T A, METRA M, ADAMO M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure[J]. Eur Heart J, 2021, 42(36): 3599-3726. DOI: 10.1093/eurheartj/ehab368.
[6]
WANG S B, MA L J, SU N. Research progress of cardiac magnetic resonance imaging in evaluating heart failure with preserved ejection fraction[J]. China Med Devices, 2023, 38(5): 166-172. DOI: 10.3969/j.iSSN.1674-1633.2023.05.030.
[7]
RUSSO V, LOVATO L, LIGABUE G. Cardiac MRI: technical basis[J]. Radiol Med, 2020, 125(11): 1040-1055. DOI: 10.1007/s11547-020-01282-z.
[8]
WANG X, PU J. Recent advances in cardiac magnetic resonance for imaging of acute myocardial infarction[J/OL]. Small Meth, 2024, 8(3): 2301170 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/37992241/. DOI: 10.1002/smtd.202301170.
[9]
NAKAMORI S, AMYAR A, FAHMY A S, et al. Cardiovascular magnetic resonance radiomics to identify components of the extracellular matrix in dilated cardiomyopathy[J]. Circulation, 2024, 150(1): 7-18. DOI: 10.1161/CIRCULATIONAHA.123.067107.
[10]
ROBINSON A A, CHOW K, SALERNO M. Myocardial T1 and ECV measurement: underlying concepts and technical considerations[J]. JACC Cardiovasc Imaging, 2019, 12(11Pt 2): 2332-2344. DOI: 10.1016/j.jcmg.2019.06.031.
[11]
YANG Y X, LU M J. Application of cardiac magnetic resonance in pathogeny analysis of heart failure[J]. Chin J New Clin Med, 2021, 14(6): 549-553. DOI: 10.3969/j.issn.1674-3806.2021.06.05.
[12]
LIU C F, FERRARI V A, HAN Y C. Cardiovascular magnetic resonance imaging and heart failure[J]. Curr Cardiol Rep, 2021, 23(4): 35. DOI: 10.1007/s11886-021-01464-9.
[13]
CABAC-POGOREVICI I, MUK B, RUSTAMOVA Y, et al. Ischaemic cardiomyopathy. Pathophysiological insights, diagnostic management and the roles of revascularisation and device treatment. Gaps and dilemmas in the era of advanced technology[J]. Eur J Heart Fail, 2020, 22(5): 789-799. DOI: 10.1002/ejhf.1747.
[14]
PASTENA P, FRYE J T, HO C, et al. Ischemic cardiomyopathy: epidemiology, pathophysiology, outcomes, and therapeutic options[J]. Heart Fail Rev, 2024, 29(1): 287-299. DOI: 10.1007/s10741-023-10377-4.
[15]
MUSCOGIURI G, RICCI F, SCAFURI S, et al. Cardiac magnetic resonance tissue characterization in ischemic cardiomyopathy[J]. J Thorac Imaging, 2022, 37(1): 2-16. DOI: 10.1097/RTI.0000000000000621.
[16]
ARAI A E, SCHULZ-MENGER J, SHAH D J, et al. Stress perfusion cardiac magnetic resonance vs SPECT imaging for detection of coronary artery disease[J]. J Am Coll Cardiol, 2023, 82(19): 1828-1838. DOI: 10.1016/j.jacc.2023.08.046.
[17]
SCATTEIA A, DELLEGROTTAGLIE S. Cardiac magnetic resonance in ischemic cardiomyopathy: present role and future directions[J/OL]. Eur Heart J Suppl, 2023, 25(Suppl C): C58-C62 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/37125306/. DOI: 10.1093/eurheartjsupp/suad007.
[18]
PHUAH Y, TAN Y X, ZAGHLOUL S, et al. A systematic review and meta-analysis of transthoracic echocardiogram vs. cardiac magnetic resonance imaging for the detection of left ventricular thrombus[J/OL]. Eur Heart J Imaging Methods Pract, 2023, 1(2): qyad041 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/39045058/. DOI: 10.1093/ehjimp/qyad041.
[19]
DE WAHA S, PATEL M R, GRANGER C B, et al. Relationship between microvascular obstruction and adverse events following primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: an individual patient data pooled analysis from seven randomized trials[J]. Eur Heart J, 2017, 38(47): 3502-3510. DOI: 10.1093/eurheartj/ehx414.
[20]
THYGESEN K, ALPERT J S, JAFFE A S, et al. Fourth universal definition of myocardial infarction (2018)[J]. J Am Coll Cardiol, 2018, 72(18): 2231-2264. DOI: 10.1016/j.jacc.2018.08.1038.
[21]
MYERS M C, BREZNEN B, ZHONG Y, et al. Diverse concepts in definitions of dilated cardiomyopathy: theory and practice[J]. Cardiol Res, 2024, 15(5): 319-329. DOI: 10.14740/cr1679.
[22]
SINGLA N, MEHRA S, GARGA U C. Diagnostic role of cardiovascular magnetic resonance imaging in dilated cardiomyopathy[J]. Indian J Radiol Imaging, 2021, 31(1): 116-123. DOI: 10.1055/s-0041-1730133.
[23]
COJAN-MINZAT B O, ZLIBUT A, AGOSTON-COLDEA L. Non-ischemic dilated cardiomyopathy and cardiac fibrosis[J]. Heart Fail Rev, 2021, 26(5): 1081-1101. DOI: 10.1007/s10741-020-09940-0.
[24]
LI Y, XU Y, LI W, et al. Cardiac MRI to predict sudden cardiac death risk in dilated cardiomyopathy[J/OL]. Radiology, 2023, 307(3): e222552 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/36916890/. DOI: 10.1148/radiol.222552.
[25]
LI X L, ZHENG X H, TANG Y. Clinical application of cardiac magnetic resonance imaging in heart failure[J]. J Clin Cardiol, 2023, 39(4): 251-254. DOI: 10.13201/j.issn.1001-1439.2023.04.003.
[26]
MISTRULLI R, FERRERA A, SALERNO L, et al. Cardiomyopathy and sudden cardiac death: bridging clinical practice with cutting-edge research[J/OL]. Biomedicines, 2024, 12(7): 1602 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/39062175/. DOI: 10.3390/biomedicines12071602.
[27]
HALLIDAY B P, BAKSI A J, GULATI A, et al. Outcome in dilated cardiomyopathy related to the extent, location, and pattern of late gadolinium enhancement[J]. JACC Cardiovasc Imaging, 2019, 12(8Pt 2): 1645-1655. DOI: 10.1016/j.jcmg.2018.07.015.
[28]
DONG Z X, YIN G, YANG K, et al. Endogenous assessment of late gadolinium enhancement grey zone in patients with non-ischaemic cardiomyopathy with T1ρ and native T1 mapping[J]. Eur Heart J Cardiovasc Imaging, 2023, 24(4): 492-502. DOI: 10.1093/ehjci/jeac128.
[29]
LI S, ZHOU D, SIRAJUDDIN A, et al. T1 mapping and extracellular volume fraction in dilated cardiomyopathy: a prognosis study[J]. JACC Cardiovasc Imaging, 2022, 15(4): 578-590. DOI: 10.1016/j.jcmg.2021.07.023.
[30]
TAYLOR A J, SALERNO M, DHARMAKUMAR R, et al. T1 mapping: basic techniques and clinical applications[J]. JACC Cardiovasc Imaging, 2016, 9(1): 67-81. DOI: 10.1016/j.jcmg.2015.11.005.
[31]
ZHANG H Y, ZHU L Y, ZHAO S H, et al. Research progresses of cardiac magnetic resonance in 2022[J]. Chin J Magn Reson Imag, 2023, 14(6): 133-138, 144. DOI: 10.12015/ISn.1674-8034.2023.06.024.
[32]
YOUN J C, HONG Y J, LEE H J, et al. Contrast-enhanced T1 mapping-based extracellular volume fraction independently predicts clinical outcome in patients with non-ischemic dilated cardiomyopathy: a prospective cohort study[J]. Eur Radiol, 2017, 27(9): 3924-3933. DOI: 10.1007/s00330-017-4817-9.
[33]
EICHHORN C, KOECKERLING D, REDDY R K, et al. Risk stratification in nonischemic dilated cardiomyopathy using CMR imaging: a systematic review and meta-analysis[J]. JAMA, 2024, 332(18): 1535-1550. DOI: 10.1001/jama.2024.13946.
[34]
GAO Y, WANG H P, LIU M X, et al. Early detection of myocardial fibrosis in cardiomyopathy in the absence of late enhancement: role of T1 mapping and extracellular volume analysis[J]. Eur Radiol, 2023, 33(3): 1982-1991. DOI: 10.1007/s00330-022-09147-x.
[35]
JIA S Q, LV S Y, JIN Y H, et al. Cardiac MRI for clinical dilated cardiomyopathy: Improved diagnostic power via combined T1, T2, and ECV[J]. Radiography (Lond), 2024, 30(3): 926-931. DOI: 10.1016/j.radi.2024.04.005.
[36]
CADOUR F, QUEMENEUR M, BIERE L, et al. Prognostic value of cardiovascular magnetic resonance T1 mapping and extracellular volume fraction in nonischemic dilated cardiomyopathy[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 7 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/36747201/. DOI: 10.1186/s12968-023-00919-y.
[37]
XU Y W, LI Y J, WANG S Q, et al. Prognostic value of mid-term cardiovascular magnetic resonance follow-up in patients with non-ischemic dilated cardiomyopathy: a prospective cohort study[J/OL]. J Cardiovasc Magn Reson, 2024, 26(1): 101002 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/38237899/. DOI: 10.1016/j.jocmr.2024.101002.
[38]
BERDIBEKOV B S, ALEXANDROVA S A, BULAEVA N I, et al. Prognostic value of myocardial tissue characterization by cardiac magnetic resonance imaging using T1 mapping in nonischemic dilated cardiomyopathy: a systematic review and meta-analysis[J/OL]. Clin Radiol, 2025, 80: 106726 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/39520933/. DOI: 10.1016/j.crad.2024.10.007.
[39]
OMMEN S R, HO C Y, ASIF I M, et al. 2024 AHA/ACC/AMSSM/HRS/PACES/SCMR guideline for the management of hypertrophic cardiomyopathy: a report of the American heart association/American college of cardiology joint committee on clinical practice guidelines[J/OL]. Circulation, 2024, 149(23): e1239-e1311 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/38718139/. DOI: 10.1161/CIR.0000000000001250.
[40]
LIU J, ZHAO S H, YU S Q, et al. Patterns of replacement fibrosis in hypertrophic cardiomyopathy[J]. Radiology, 2022, 302(2): 298-306. DOI: 10.1148/radiol.2021210914.
[41]
CUI C, ZHAO S H, LU M J. Cardiac magnetic resonance imaging in diagnosis and clinical management of hypertrophic cardiomyopathy[J]. Adv Cardiovasc Dis, 2024, 45(2): 97-102. DOI: 10.16806/j.cnki.issn.1004-3934.2024.02.001.
[42]
SPAAPEN T O M, BOHTE A E, SLIEKER M G, et al. Cardiac MRI in diagnosis, prognosis, and follow-up of hypertrophic cardiomyopathy in children: current perspectives[J]. Br J Radiol, 2024, 97(1157): 875-881. DOI: 10.1093/bjr/tqae033.
[43]
BAGGIANO A, DEL TORTO A, GUGLIELMO M, et al. Role of CMR mapping techniques in cardiac hypertrophic phenotype[J/OL]. Diagnostics (Basel), 2020, 10(10): E770 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/33003571/. DOI: 10.3390/diagnostics10100770.
[44]
ALAJMI F, KANG M, DUNDAS J, et al. Novel magnetic resonance imaging tools for hypertrophic cardiomyopathy risk stratification[J/OL]. Life (Basel), 2024, 14(2): 200 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/38398708/. DOI: 10.3390/life14020200.
[45]
XU J, YANG W J, ZHAO S H, et al. State-of-the-art myocardial strain by CMR feature tracking: clinical applications and future perspectives[J]. Eur Radiol, 2022, 32(8): 5424-5435. DOI: 10.1007/s00330-022-08629-2.
[46]
HAO X Y, WU J, ZHU L N, et al. Evaluation of myocardial strain in patients with subclinical hypertrophic cardiomyopathy and subclinical Hypertensive Heart Disease using Cardiac magnetic resonance feature tracking[J]. Int J Cardiovasc Imaging, 2023, 39(11): 2237-2246. DOI: 10.1007/s10554-023-02930-x.
[47]
NEGRI F, SANNA G D, DI GIOVANNA G, et al. Cardiac magnetic resonance feature-tracking identifies preclinical abnormalities in hypertrophic cardiomyopathy sarcomere gene mutation carriers[J/OL]. Circ Cardiovasc Imaging, 2024, 17(4): e016042 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/38563190/. DOI: 10.1161/CIRCIMAGING.123.016042.
[48]
HSIAO A, TARIQ U, ALLEY M T, et al. Inlet and outlet valve flow and regurgitant volume may be directly and reliably quantified with accelerated, volumetric phase-contrast MRI[J]. J Magn Reson Imaging, 2015, 41(2): 376-385. DOI: 10.1002/jmri.24578.
[49]
ZHUANG B Y, SIRAJUDDIN A, ZHAO S H, et al. The role of 4D flow MRI for clinical applications in cardiovascular disease: current status and future perspectives[J]. Quant Imaging Med Surg, 2021, 11(9): 4193-4210. DOI: 10.21037/qims-20-1234.
[50]
IWATA K, SEKINE T, MATSUDA J, et al. Measurement of turbulent kinetic energy in hypertrophic cardiomyopathy using triple-velocity encoding 4D flow MR imaging[J]. Magn Reson Med Sci, 2024, 23(1): 39-48. DOI: 10.2463/mrms.mp.2022-0051.
[51]
POLA K, ASHKIR Z, MYERSON S, et al. Flow inefficiencies in non-obstructive HCM revealed by kinetic energy and hemodynamic forces on 4D-flow CMR[J/OL]. Eur Heart J Imaging Methods Pract, 2024, 2(3): qyae074 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/39210991/. DOI: 10.1093/ehjimp/qyae074.
[52]
WENGROFSKY P, AKIVIS Y, BUKHAROVICH I. Cardiac multimodality imaging in hypertrophic cardiomyopathy: what to look for and when to image[J]. Curr Cardiol Rev, 2023, 19(5): 1-18. DOI: 10.2174/1573403X19666230316103117.
[53]
TANA M, TANA C, PANARESE A, et al. Clinical and cardiovascular magnetic resonance imaging features of cardiac amyloidosis[J/OL]. Rev Cardiovasc Med, 2023, 24(10): 291 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/39077571/. DOI: 10.31083/j.rcm2410291.
[54]
RUBERG F L, MAURER M S. Cardiac amyloidosis due to transthyretin protein: a review[J]. JAMA, 2024, 331(9): 778-791. DOI: 10.1001/jama.2024.0442.
[55]
BLOOM M W, GOREVIC P D. Cardiac amyloidosis[J/OL]. Ann Intern Med, 2023, 176(3): ITC33-ITC48 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/36913688/. DOI: 10.7326/aitc202303210.
[56]
SINITSYN V. Radiomics enhances the prognostic role of magnetic resonance imaging in cardiac amyloidosis[J]. Eur Radiol, 2024, 34(1): 400-401. DOI: 10.1007/s00330-023-10192-3.
[57]
BASHIR Z, MUSHARRAF M, AZAM R, et al. Imaging modalities in cardiac amyloidosis[J/OL]. Curr Probl Cardiol, 2024, 49(12): 102858 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/39299367/. DOI: 10.1016/j.cpcardiol.2024.102858.
[58]
TANA M, TANA C, PALMIERO G, et al. Imaging findings of right cardiac amyloidosis: impact on prognosis and clinical course[J]. J Ultrasound, 2023, 26(3): 605-614. DOI: 10.1007/s40477-023-00789-1.
[59]
SCIACCA V, ECKSTEIN J, KÖRPERICH H, et al. Magnetic-resonance-imaging-based left atrial strain and left atrial strain rate as diagnostic parameters in cardiac amyloidosis[J/OL]. J Clin Med, 2022, 11(11): 3150 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/35683537/. DOI: 10.3390/jcm11113150.
[60]
BORETTO P, PATEL N H, PATEL K, et al. Prognosis prediction in cardiac amyloidosis by cardiac magnetic resonance imaging: a systematic review with meta-analysis[J/OL]. Eur Heart J Open, 2023, 3(5): oead092 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/37840586/. DOI: 10.1093/ehjopen/oead092.
[61]
PAN J A, KERWIN M J, SALERNO M. Native T1 mapping, extracellular volume mapping, and late gadolinium enhancement in cardiac amyloidosis: a meta-analysis[J]. JACC Cardiovasc Imaging, 2020, 13(6): 1299-1310. DOI: 10.1016/j.jcmg.2020.03.010.
[62]
CAI S A, HAGHBAYAN H, CHAN K K W, et al. Tissue mapping by cardiac magnetic resonance imaging for the prognostication of cardiac amyloidosis: a systematic review and meta-analysis[J/OL]. Int J Cardiol, 2024, 403: 131892 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/38382853/. DOI: 10.1016/j.ijcard.2024.131892.
[63]
CORRADO D, ZORZI A, BAUCE B, et al. Diagnosis of arrhythmogenic cardiomyopathy: 20 years of progress and innovation[J]. G Ital Cardiol (Rome), 2024, 25(10): 735-746. DOI: 10.1714/4336.43216.
[64]
CIPRIANI A, MATTESI G, BARIANI R, et al. Cardiac magnetic resonance imaging of arrhythmogenic cardiomyopathy: evolving diagnostic perspectives[J]. Eur Radiol, 2023, 33(1): 270-282. DOI: 10.1007/s00330-022-08958-2.
[65]
CASTRICHINI M, ELDEMIRE R, GROVES D W, et al. Clinical and genetic features of arrhythmogenic cardiomyopathy: diagnosis, management and the heart failure perspective[J/OL]. Prog Pediatr Cardiol, 2021, 63: 101459 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/34970070/. DOI: 10.1016/j.ppedcard.2021.101459.
[66]
MOZAFARYBAZARGANY M, SALMANIPOUR A, GHAFFARI JOLFAYI A, et al. Value of cardiac magnetic resonance feature-tracking in Arrhythmogenic Cardiomyopathy (ACM): a systematic review and meta-analysis[J/OL]. Int J Cardiol Heart Vasc, 2024, 53: 101455 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/39228971/. DOI: 10.1016/j.ijcha.2024.101455.
[67]
DONG Z X, DAI L L, SONG Y Y, et al. Right ventricular strain derived from cardiac MRI feature tracking for the diagnosis and prognosis of arrhythmogenic right ventricular cardiomyopathy[J/OL]. Radiol Cardiothorac Imaging, 2024, 6(3): e230292 [2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/38842456/. DOI: 10.1148/ryct.230292.

PREV Research progress of LGE-CMR entropy in cardiomyopathy
NEXT Research progress on magnetic resonance imaging of trastuzumab-induced cardiotoxicity in HER-2 positive breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn