Share:
Share this content in WeChat
X
Review
Research progress on magnetic resonance imaging of trastuzumab-induced cardiotoxicity in HER-2 positive breast cancer
DENG Yufei  XU Qian  SHEN Hesong  ZHANG Jiuquan 

Cite this article as: DENG Y F, XU Q, SHEN H S, et al. Research progress on magnetic resonance imaging of trastuzumab-induced cardiotoxicity in HER-2 positive breast cancer[J]. Chin J Magn Reson Imaging, 2025, 16(6): 171-175, 181. DOI:10.12015/issn.1674-8034.2025.06.026.


[Abstract] Trastuzumab is a commonly used drug for targeted therapy in human epidermal growth factor receptor 2 (HER-2) positive breast cancer, with its cardiotoxicity being a side effect during anti-tumor treatment, posing a severe threat to patient health. Timely and accurate detection of cardiotoxicity and intervention treatment are effective methods for the prevention and treatment of cardiotoxicity. Cardiac magnetic resonance (CMR), as a non-invasive imaging technique, can comprehensively assess cardiac structure, function, and tissue characteristics, and has applications potential in baseline risk stratification and follow-up monitoring of cardiotoxicity. This article reviews the progress and future prospects of CMR in the application of cardiotoxicity related to trastuzumab treatment in HER-2 positive breast cancer, aiming to provide reference for the clinical establishment of a reasonable and effective baseline risk assessment and follow-up monitoring plan for cardiac toxicity.
[Keywords] breast cancer;trastuzumab;human epidermal growth factor receptor 2;cardiotoxicity;magnetic resonance imaging

DENG Yufei1   XU Qian1   SHEN Hesong2   ZHANG Jiuquan2*  

1 School of Medicine, Chongqing University, Chongqing 400030, China

2 Department of Radiology, Chongqing University Cancer Hospital, Chongqing 400030, China

Corresponding author: ZHANG J Q, E-mail: zhangjq_radiol@foxmail.com

Conflicts of interest   None.

Received  2025-01-07
Accepted  2025-06-05
DOI: 10.12015/issn.1674-8034.2025.06.026
Cite this article as: DENG Y F, XU Q, SHEN H S, et al. Research progress on magnetic resonance imaging of trastuzumab-induced cardiotoxicity in HER-2 positive breast cancer[J]. Chin J Magn Reson Imaging, 2025, 16(6): 171-175, 181. DOI:10.12015/issn.1674-8034.2025.06.026.

[1]
LI Y W, DAI L J, WU X R, et al. Molecular characterization and classification of HER2-positive breast cancer inform tailored therapeutic strategies[J]. Cancer Res, 2024, 84(21): 3669-3683. DOI: 10.1158/0008-5472.CAN-23-4066.
[2]
The Society of Breast Cancer China Anti-Cancer Association, Breast Oncology Group of the Oncology Branch of the Chinese Medical Association. Guidelines for breast cancer diagnosis and treatment by China Anti-cancer Association (2024 edition)[J]. CHINA ONCOLOG, 2023, 33(12): 1092-1187. DOI: 10.19401/j.cnki.1007-3639.2023.12.004.
[3]
JAFARI F, SAFAEI A M, HOSSEINI L, et al. The role of cardiac magnetic resonance imaging in the detection and monitoring of cardiotoxicity in patients with breast cancer after treatment: a comprehensive review[J]. Heart Fail Rev, 2021, 26(3): 679-697. DOI: 10.1007/s10741-020-10028-y.
[4]
XU Z F, GAO Z Z, FU H X, et al. PTX3 from vascular endothelial cells contributes to trastuzumab-induced cardiac complications[J]. Cardiovasc Res, 2023, 119(5): 1250-1264. DOI: 10.1093/cvr/cvad012.
[5]
SETIA A, CHALLA R R, VALLAMKONDA B, et al. Nanomedicine and nanotheranostics: special focus on imaging of anticancer drugs induced cardiac toxicity[J]. Nanotheranostics, 2024, 8(4): 473-496. DOI: 10.7150/ntno.96846.
[6]
FRANCONE M, FIGLIOZZI S, MONTI L, et al. Multiparametric cardiac magnetic resonance unveiling the mechanisms and early manifestations of anticancer drug cardiotoxicity[J]. Eur Radiol, 2023, 33(12): 8439-8441. DOI: 10.1007/s00330-023-09948-8.
[7]
SIRI-ANGKUL N, CHATTIPAKORN S C, CHATTIPAKORN N. The mechanistic insights of the arrhythmogenic effect of trastuzumab[J/OL]. Biomed Pharmacother, 2021, 139: 111620 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/33901874/. DOI: 10.1016/j.biopha.2021.111620.
[8]
HENRIKSEN P A. Anthracycline cardiotoxicity: an update on mechanisms, monitoring and prevention[J]. Heart, 2018, 104(12): 971-977. DOI: 10.1136/heartjnl-2017-312103.
[9]
YANG L, BHATTACHARYA A, PETERSON D, et al. Targeted dual degradation of HER2 and EGFR obliterates oncogenic signaling, overcomes therapy resistance, and inhibits metastatic lesions in HER2-positive breast cancer models[J/OL]. Drug Resist Updat, 2024, 74: 101078 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/38503142/. DOI: 10.1016/j.drup.2024.101078.
[10]
SWAIN S M, SHASTRY M, HAMILTON E. Targeting HER2-positive breast cancer: advances and future directions[J]. Nat Rev Drug Discov, 2023, 22(2): 101-126. DOI: 10.1038/s41573-022-00579-0.
[11]
HERRMANN J. Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia[J]. Nat Rev Cardiol, 2020, 17(8): 474-502. DOI: 10.1038/s41569-020-0348-1.
[12]
BATTISTI N M L, ANDRES M S, LEE K A, et al. Incidence of cardiotoxicity and validation of the Heart Failure Association-International Cardio-Oncology Society risk stratification tool in patients treated with trastuzumab for HER2-positive early breast cancer[J]. Breast Cancer Res Treat, 2021, 188(1): 149-163. DOI: 10.1007/s10549-021-06192-w.
[13]
EBRAHIM N, SAIHATI H A AL, MOSTAFA O, et al. Prophylactic evidence of MSCs-derived exosomes in doxorubicin/trastuzumab-induced cardiotoxicity: beyond mechanistic target of NRG-1/erb signaling pathway[J/OL]. Int J Mol Sci, 2022, 23(11): 5967 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/35682646/. DOI: 10.3390/ijms23115967.
[14]
DE AZAMBUJA E, AGOSTINETTO E, PROCTER M, et al. Cardiac safety of dual anti-HER2 blockade with pertuzumab plus trastuzumab in early HER2-positive breast cancer in the APHINITY trial[J/OL]. ESMO Open, 2023, 8(1): 100772 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/36681013/. DOI: 10.1016/j.esmoop.2022.100772.
[15]
LIN M M, XIONG W P, WANG S Y, et al. The research progress of trastuzumab-induced cardiotoxicity in HER-2-positive breast cancer treatment[J/OL]. Front Cardiovasc Med, 2022, 8: 821663 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/35097033/. DOI: 10.3389/fcvm.2021.821663.
[16]
MIN J, WU L, LIU Y D, et al. Empagliflozin attenuates trastuzumab-induced cardiotoxicity through suppression of DNA damage and ferroptosis[J/OL]. Life Sci, 2023, 312: 121207 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/36403642/. DOI: 10.1016/j.lfs.2022.121207.
[17]
WEI S S, MA W J, YANG Y Y, et al. Trastuzumab potentiates doxorubicin-induced cardiotoxicity via activating the NLRP3 inflammasome in vivo and in vitro[J/OL]. Biochem Pharmacol, 2023, 214: 115662 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/37331637/. DOI: 10.1016/j.bcp.2023.115662.
[18]
ASLAN D, OZONER S, INANC M, et al. Evaluation of early cardiotoxicity in HER2-positive breast cancer patients receiving radiotherapy and concurrent trastuzumab[J]. Ir J Med Sci, 2025, 194(1): 7-18. DOI: 10.1007/s11845-024-03835-x.
[19]
GONCIAR D, MOCAN L, ZLIBUT A, et al. Cardiotoxicity in HER2-positive breast cancer patients[J]. Heart Fail Rev, 2021, 26(4): 919-935. DOI: 10.1007/s10741-020-10072-8.
[20]
RICCIO G, COPPOLA C, PISCOPO G, et al. Trastuzumab and target-therapy side effects: is still valid to differentiate anthracycline type I from type II cardiomyopathies?[J]. Hum Vaccin Immunother, 2016, 12(5): 1124-1131. DOI: 10.1080/21645515.2015.1125056.
[21]
WANG W, LIU D, YANG L Y, et al. Compound Kushen injection attenuates angiotensin II-mediated heart failure by inhibiting the PI3K/Akt pathway[J/OL]. Int J Mol Med, 2023, 51(3): 23 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/36734284/. DOI: 10.3892/ijmm.2023.5226.
[22]
CARDIOVASCULAR EXPERT COMMITTEE OF CHINESE MEDICAL DOCTOR ASSOCIATION OF LABORATORY MEDICINE, SECTION OF CARDIO-ONCOLOGY GROUP OF CHINESE SOCIETY OF CARDIOLOGY. Chinese expert consensus on cardiac biomarkers for monitoring and management of cardiovascular toxicity in cancer therapy (2024 edition)[J]. Zhonghua Yi Xue Za Zhi, 2024, 104(36): 3371-3385. DOI: 10.3760/cma.j.cn112137-20240510-01091.
[23]
Chinese Anti-cancer Association Society of Integrative Cardio-oncology, Ultrasound Branch of the Chinese Medical Association, Chinese Society of Echocardiography. Chinese guideline for the clinical application of noninvasive imaging technology in accessing cancer therapy-related cardiovascular toxicity (2023 edition)[J]. Zhonghua Yi Xue Za Zhi, 2023, 103(42): 3367-3383. DOI: 10.3760/cma.j.cn112137-20230908-00428.
[24]
BERGAMINI C, NIRO L, SPRINGHETTI P, et al. Role of early left atrial functional decline in predicting cardiotoxicity in HER2 positive breast cancer patients treated with trastuzumab[J]. Cardiovasc Toxicol, 2024, 24(6): 550-562. DOI: 10.1007/s12012-024-09861-6.
[25]
LYON A R, LÓPEZ-FERNÁNDEZ T, COUCH L S, et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS)[J]. Eur Heart J, 2022, 43(41): 4229-4361. DOI: 10.1093/eurheartj/ehac244.
[26]
ESMAEILZADEH M, URZUA FRESNO C M, SOMERSET E, et al. A combined echocardiography approach for the diagnosis of cancer therapy-related cardiac dysfunction in women with early-stage breast cancer[J]. JAMA Cardiol, 2022, 7(3): 330-340. DOI: 10.1001/jamacardio.2021.5881.
[27]
HOUBOIS C P, NOLAN M, SOMERSET E, et al. Serial cardiovascular magnetic resonance strain measurements to identify cardiotoxicity in breast cancer: comparison with echocardiography[J]. JACC Cardiovasc Imaging, 2021, 14(5): 962-974. DOI: 10.1016/j.jcmg.2020.09.039.
[28]
MAŁEK Ł A, ŚPIEWAK M. Isolated myocardial edema in cardiac magnetic resonance - in search of a management strategy[J]. Trends Cardiovasc Med, 2023, 33(7): 395-402. DOI: 10.1016/j.tcm.2022.04.001.
[29]
NAKAMORI S, AMYAR A, FAHMY A S, et al. Cardiovascular magnetic resonance radiomics to identify components of the extracellular matrix in dilated cardiomyopathy[J]. Circulation, 2024, 150(1): 7-18. DOI: 10.1161/CIRCULATIONAHA.123.067107.
[30]
HALLIDAY B P, SENIOR R, PENNELL D J. Assessing left ventricular systolic function: from ejection fraction to strain analysis[J]. Eur Heart J, 2021, 42(7): 789-797. DOI: 10.1093/eurheartj/ehaa587.
[31]
CALVILLO-ARGÜELLES O, THAMPINATHAN B, SOMERSET E, et al. Diagnostic and prognostic value of myocardial work indices for identification of cancer therapy-related cardiotoxicity[J]. JACC Cardiovasc Imaging, 2022, 15(8): 1361-1376. DOI: 10.1016/j.jcmg.2022.02.027.
[32]
BOUWER N I, JAGER A, LIESTING C, et al. Cardiac monitoring in HER2-positive patients on trastuzumab treatment: a review and implications for clinical practice[J/OL]. Breast, 2020, 52: 33-44 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/32361151/. DOI: 10.1016/j.breast.2020.04.005.
[33]
KWAN J M, ARBUNE A, HENRY M L, et al. Quantitative cardiovascular magnetic resonance findings and clinical risk factors predict cardiovascular outcomes in breast cancer patients[J/OL]. PLoS One, 2023, 18(5): e0286364 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/37252927/. DOI: 10.1371/journal.pone.0286364.
[34]
HUANG F, BREZDEN-MASLEY C, CHAN K K W, et al. Evaluation of left atrial remodeling using cardiovascular magnetic resonance imaging in breast cancer patients treated with adjuvant trastuzumab[J]. Eur Radiol, 2022, 32(6): 4234-4242. DOI: 10.1007/s00330-021-08466-9.
[35]
BARTHUR A, BREZDEN-MASLEY C, CONNELLY K A, et al. Longitudinal assessment of right ventricular structure and function by cardiovascular magnetic resonance in breast cancer patients treated with trastuzumab: a prospective observational study[J/OL]. J Cardiovasc Magn Reson, 2017, 19(1): 44 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/28395671/. DOI: 10.1186/s12968-017-0356-4.
[36]
GUO Y B, LIN L, ZHAO S H, et al. Myocardial fibrosis assessment at 3-T versus 5-T myocardial late gadolinium enhancement MRI: early results[J/OL]. Radiology, 2024, 313(2): e233424 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/39530890/. DOI: 10.1148/radiol.233424.
[37]
KIM J, HONG Y J, HAN K, et al. Chemotherapy-related cardiac dysfunction: quantitative cardiac magnetic resonance image parameters and their prognostic implications[J]. Korean J Radiol, 2023, 24(9): 838-848. DOI: 10.3348/kjr.2023.0095.
[38]
THAVENDIRANATHAN P, SHALMON T, FAN C S, et al. Comprehensive cardiovascular magnetic resonance tissue characterization and cardiotoxicity in women with breast cancer[J]. JAMA Cardiol, 2023, 8(6): 524-534. DOI: 10.1001/jamacardio.2023.0494.
[39]
KERSTEN J, FINK V, KERSTEN M, et al. CMR reveals myocardial damage from cardiotoxic oncologic therapies in breast cancer patients[J]. Int J Cardiovasc Imaging, 2024, 40(2): 225-235. DOI: 10.1007/s10554-023-02996-7.
[40]
KADOWAKI H, ISHIDA J, UEHARA M, et al. Detection of profound myocardial damage by cardiac MRI in a patient with severe cardiotoxicity induced by anti-HER2 therapy[J]. Int Heart J, 2021, 62(6): 1436-1441. DOI: 10.1536/ihj.21-388.
[41]
MODI K, JOPPA S, CHEN K A, et al. Myocardial damage assessed by late gadolinium enhancement on cardiovascular magnetic resonance imaging in cancer patients treated with anthracyclines and/or trastuzumab[J]. Eur Heart J Cardiovasc Imaging, 2021, 22(4): 427-434. DOI: 10.1093/ehjci/jeaa279.
[42]
RAJIAH P S, KALISZ K, BRONCANO J, et al. Myocardial strain evaluation with cardiovascular MRI: physics, principles, and clinical applications[J]. Radiographics, 2022, 42(4): 968-990. DOI: 10.1148/rg.210174.
[43]
LI Y M, HUANG R G, ZHENG S Y, et al. Myocardial strain analysis by feature tracking cardiac magnetic resonance to identify subclinical cardiac dysfunction in patients with MINOCA[J/OL]. J Cardiothorac Surg, 2024, 19(1): 602 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/39385205/. DOI: 10.1186/s13019-024-03093-z.
[44]
PEZESHKI P S, GHORASHI S M, HOUSHMAND G, et al. Feature tracking cardiac magnetic resonance imaging to assess cardiac manifestations of systemic diseases[J]. Heart Fail Rev, 2023, 28(5): 1189-1199. DOI: 10.1007/s10741-023-10321-6.
[45]
OGIER A C, BUSTIN A, COCHET H, et al. The road toward reproducibility of parametric mapping of the heart: a technical review[J/OL]. Front Cardiovasc Med, 2022, 9: 876475 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/35600490/. DOI: 10.3389/fcvm.2022.876475.
[46]
VAN DER LINDE D, VAN HAGEN I, VEEN K, et al. Global longitudinal strain: an early marker for cardiotoxicity in patients treated for breast cancer[J]. Neth Heart J, 2023, 31(3): 103-108. DOI: 10.1007/s12471-022-01734-3.
[47]
TERUI Y, SUGIMURA K, OTA H, et al. Usefulness of cardiac magnetic resonance for early detection of cancer therapeutics-related cardiac dysfunction in breast cancer patients[J/OL]. Int J Cardiol, 2023, 371: 472-479 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/36115441/. DOI: 10.1016/j.ijcard.2022.09.025.
[48]
LI X Q, SHEN H S, PENG Y L, et al. The additional value of myocardial T1ρ mapping to T1 and T2 mapping for predicting subsequent cancer therapy-related cardiac dysfunction in breast cancer patients who received anthracyclines with/without trastuzumab[J/OL]. Eur J Radiol, 2024, 181: 111755 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/39342884/. DOI: 10.1016/j.ejrad.2024.111755.
[49]
BOUWER N I, LIESTING C, KOFFLARD M J M, et al. 2D-echocardiography vs cardiac MRI strain: a prospective cohort study in patients with HER2-positive breast cancer undergoing trastuzumab[J/OL]. Cardiovasc Ultrasound, 2021, 19(1): 35 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/34753503/. DOI: 10.1186/s12947-021-00266-x.
[50]
MAWAD W, MERTENS L, PAGANO J J, et al. Effect of anthracycline therapy on myocardial function and markers of fibrotic remodelling in childhood cancer survivors[J]. Eur Heart J Cardiovasc Imaging, 2021, 22(4): 435-442. DOI: 10.1093/ehjci/jeaa093.
[51]
ALTAHA M A, NOLAN M, MARWICK T H, et al. Can quantitative CMR tissue characterization adequately identify cardiotoxicity during chemotherapy?: impact of temporal and observer variability[J]. JACC Cardiovasc Imaging, 2020, 13(4): 951-962. DOI: 10.1016/j.jcmg.2019.10.016.
[52]
ABU-KHALAF M M, SAFONOV A, STRATTON J, et al. Examining the cost-effectiveness of baseline left ventricular function assessment among breast cancer patients undergoing anthracycline-based therapy[J]. Breast Cancer Res Treat, 2019, 176(2): 261-270. DOI: 10.1007/s10549-019-05178-z.
[53]
ZHENG Y, LIU H, ZHAO L, et al. Serial cardiac MRI for quantification of the dynamics of anthracycline-induced subclinical myocardial injury[J]. J Magn Reson Imaging, 2023, 58(5): 1533-1541. DOI: 10.1002/jmri.28667.
[54]
KIMBALL A, PATIL S, KOCZWARA B, et al. Late characterisation of cardiac effects following anthracycline and trastuzumab treatment in breast cancer patients[J/OL]. Int J Cardiol, 2018, 261: 159-161 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/29576422/. DOI: 10.1016/j.ijcard.2018.03.025.
[55]
GONG I Y, ONG G, BREZDEN-MASLEY C, et al. Early diastolic strain rate measurements by cardiac MRI in breast cancer patients treated with trastuzumab: a longitudinal study[J]. Int J Cardiovasc Imaging, 2019, 35(4): 653-662. DOI: 10.1007/s10554-018-1482-2.
[56]
GIUSCA S, KOROSOGLOU G, MONTENBRUCK M, et al. Multiparametric early detection and prediction of cardiotoxicity using myocardial strain, T1 and T2 mapping, and biochemical markers: a longitudinal cardiac resonance imaging study during 2 years of follow-up[J/OL]. Circ Cardiovasc Imaging, 2021, 14(6): e012459 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/34126756/. DOI: 10.1161/CIRCIMAGING.121.012459.
[57]
CHAI Y Z, JIANG M, WANG Y H, et al. Protocol for pyrotinib cardiac safety in patients with HER2-positive early or locally advanced breast cancer-The EARLY-MYO-BC study[J/OL]. Front Cardiovasc Med, 2023, 10: 1021937 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/36844736/. DOI: 10.3389/fcvm.2023.1021937.
[58]
ČELUTKIENĖ J, PUDIL R, LÓPEZ-FERNÁNDEZ T, et al. Role of cardiovascular imaging in cancer patients receiving cardiotoxic therapies: a position statement on behalf of the Heart Failure Association (HFA), the European Association of Cardiovascular Imaging (EACVI) and the Cardio-Oncology Council of the European Society of Cardiology (ESC)[J]. Eur J Heart Fail, 2020, 22(9): 1504-1524. DOI: 10.1002/ejhf.1957.
[59]
NARESH N K, MISENER S, ZHANG Z L, et al. Cardiac MRI myocardial functional and tissue characterization detects early cardiac dysfunction in a mouse model of chemotherapy-induced cardiotoxicity[J/OL]. NMR Biomed, 2020, 33(9): e4327 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/32567177/. DOI: 10.1002/nbm.4327.
[60]
TAHIR E, AZAR M, SHIHADA S, et al. Myocardial injury detected by T1 and T2 mapping on CMR predicts subsequent cancer therapy-related cardiac dysfunction in patients with breast cancer treated by epirubicin-based chemotherapy or left-sided RT[J]. Eur Radiol, 2022, 32(3): 1853-1865. DOI: 10.1007/s00330-021-08260-7.
[61]
MOISANDER M, SKYTTÄ T, KIVISTÖ S, et al. Radiotherapy-induced diffuse myocardial fibrosis in early-stage breast cancer patients - multimodality imaging study with six-year follow-up[J/OL]. Radiat Oncol, 2023, 18(1): 124 [2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/37496091/. DOI: 10.1186/s13014-023-02319-z.

PREV Advances in the application of multimodal cardiac magnetic resonance in the etiological analysis of left heart failure
NEXT Research progress in the preoperative evaluation of lymphovascular invasion of breast cancer by imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn