Share:
Share this content in WeChat
X
Review
Research progress of magnetic resonance imaging in predicting immunohistochemical markers in hepatocellular carcinoma
LI Jiahui  ZHU Shaocheng 

Cite this article as: LI J H, ZHU S C. Research progress of magnetic resonance imaging in predicting immunohistochemical markers in hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2025, 16(6): 182-188, 219. DOI:10.12015/issn.1674-8034.2025.06.028.


[Abstract] Hepatocellular carcinoma (HCC), a highly prevalent malignant tumor, is characterized by significant heterogeneity and variable prognosis. Immunohistochemical markers play a critical role in the diagnosis, treatment and prognostic evaluation of HCC. However, current reliance on invasive pathological methods limits their utility for dynamic monitoring and early application. Magnetic resonance imaging (MRl), leveraging its multi-parametric capabilities, offers a noninvasive approach to predict HCC immunohistochemical markers, while emerging radiomics techniques demonstrate substantial potential in biomarker prediction. There is a lack of systematic reviews to discuss the application value of MRI in predicting HCC immunohistochemical markers. This article synthesizes advances in MRI morphological, functional and radiomics for predicting key HCC immunohistochemical markers, including Ki-67, glypican-3, cytokeratin 19, programmed death-1 and its ligands, P53 tumor protein, and vascular endothelial growth factor. We critically evaluate the roles of MRI features and radiomics methodologies in predicting these markers, alongside their technical strengths and limitations. Our analysis identifies critical challenges: conventional MRI lacks dynamic correlation between imaging phenotypes and pathological mechanisms, with insufficient specificity in certain imaging features, while radiomics models suffer from feature instability due to single-center small-sample datasets and poor interpretability. Future research should integrate multi-modal functional MRI, multi-center big data, and artificial intelligence-enhanced radiomics to establish a noninvasive evaluation framework, thereby advancing HCC clinical paradigms toward imaging-driven intelligent decision-making.
[Keywords] hepatocellular carcinoma;immunohistochemical markers;magnetic resonance imaging;radiomics

LI Jiahui1, 2   ZHU Shaocheng1, 2, 3*  

1 Department of Medical Imaging, People's Hospital of Zhengzhou University, Zhengzhou 450003, China

2 Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou 450003, China

3 Department of Radiology, Fuwai Central China Cardiovascular Hospital, Zhengzhou 450003, China

Corresponding author: ZHU S C, E-mail: zsc2686@163.com

Conflicts of interest   None.

Received  2025-03-07
Accepted  2025-06-05
DOI: 10.12015/issn.1674-8034.2025.06.028
Cite this article as: LI J H, ZHU S C. Research progress of magnetic resonance imaging in predicting immunohistochemical markers in hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2025, 16(6): 182-188, 219. DOI:10.12015/issn.1674-8034.2025.06.028.

[1]
ZENG H M, ZHENG R S, SUN K X, et al. Cancer survival statistics in China 2019-2021: a multicenter, population-based study[J]. J Natl Cancer Cent, 2024, 4(3): 203-213. DOI: 10.1016/j.jncc.2024.06.005.
[2]
MAMDOUH S, SOLIMAN A, KHORSHED F, et al. Glypican-3, vascular endothelial growth factor and Golgi protein-73 for differentiation between liver cirrhosis and hepatocellular carcinoma[J]. Asian Pac J Cancer Prev, 2023, 24(2): 497-507. DOI: 10.31557/apjcp.2023.24.2.497.
[3]
YANG X H, NI H H, LU Z, et al. Mesenchymal circulating tumor cells and Ki67: their mutual correlation and prognostic implications in hepatocellular carcinoma[J/OL]. BMC Cancer, 2023, 23(1): 10 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/36600214/. DOI: 10.1186/s12885-023-10503-3.
[4]
RAMOS-SANTILLAN V, OSHI M, NELSON E, et al. High Ki67 gene expression is associated with aggressive phenotype in hepatocellular carcinoma[J]. World J Oncol, 2024, 15(2): 257-267. DOI: 10.14740/wjon1751.
[5]
LIANG Y Y, XU F, MOU Q J, et al. A gadoxetic acid-enhanced MRI-based model using LI-RADS v2018 features for preoperatively predicting Ki-67 expression in hepatocellular carcinoma[J/OL]. BMC Med Imaging, 2024, 24(1): 27 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/38273242/. DOI: 10.1186/s12880-024-01204-9.
[6]
LI M G, LUO S B, HU Y Y, et al. Role of the clinical features and MRI parameters on ki-67 expression in hepatocellular carcinoma patients: development of a predictive nomogram[J]. J Gastrointest Cancer, 2024, 55(3): 1069-1078. DOI: 10.1007/s12029-024-01051-5.
[7]
LIU Z W, YANG S M, CHEN X J, et al. Nomogram development and validation to predict Ki-67 expression of hepatocellular carcinoma derived from Gd-EOB-DTPA-enhanced MRI combined with T1 mapping[J/OL]. Front Oncol, 2022, 12: 954445 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/36313692/. DOI: 10.3389/fonc.2022.954445.
[8]
HUANG Z Q, XU X Q, MENG X J, et al. Correlations between ADC values and molecular markers of Ki-67 and HIF-1α in hepatocellular carcinoma[J]. Eur J Radiol, 2015, 84(12): 2464-2469. DOI: 10.1016/j.ejrad.2015.09.013.
[9]
WEI Y C, YUN L, LIANG Y L, et al. Nomogram based on the neutrophil-to-lymphocyte ratio and MR diffusion quantitative parameters for predicting Ki67 expression in hepatocellular carcinoma from a prospective study[J/OL]. Sci Rep, 2024, 14(1): 31738 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/39738357/. DOI: 10.1038/s41598-024-82333-7.
[10]
QIU G B, CHEN J C, LIAO W X, et al. Gadoxetic acid-enhanced MRI combined with T1 mapping and clinical factors to predict Ki-67 expression of hepatocellular carcinoma[J/OL]. Front Oncol, 2023, 13: 1134646 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/37456233/. DOI: 10.3389/fonc.2023.1134646.
[11]
YE Z, CAO L K, WEI Y, et al. Preoperative prediction of hepatocellular carcinoma with highly aggressive characteristics using quantitative parameters derived from hepatobiliary phase MR images[J/OL]. Ann Transl Med, 2020, 8(4): 85 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/32175378/. DOI: 10.21037/atm.2020.01.04.
[12]
LI Q T, CHEN T Y, SHI N N, et al. Quantitative evaluation of hepatic fibrosis by fibro Scan and Gd-EOB-DTPA-enhanced T1 mapping magnetic resonance imaging in chronic hepatitis B[J]. Abdom Radiol (NY), 2022, 47(2): 684-692. DOI: 10.1007/s00261-021-03300-8.
[13]
YAN Y, LIN X S, MING W Z, et al. Radiomic analysis based on Gd-EOB-DTPA enhanced MRI for the preoperative prediction of ki-67 expression in hepatocellular carcinoma[J]. Acad Radiol, 2024, 31(3): 859-869. DOI: 10.1016/j.acra.2023.07.019.
[14]
YE Z, JIANG H Y, CHEN J, et al. Texture analysis on gadoxetic acid enhanced-MRI for predicting Ki-67 status in hepatocellular carcinoma: a prospective study[J]. Chin J Cancer Res, 2019, 31(5): 806-817. DOI: 10.21147/j.issn.1000-9604.2019.05.10.
[15]
FAN Y F, YU Y X, WANG X M, et al. Radiomic analysis of Gd-EOB-DTPA-enhanced MRI predicts Ki-67 expression in hepatocellular carcinoma[J/OL]. BMC Med Imag, 2021, 21(1): 100 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/34130644/. DOI: 10.1186/s12880-021-00633-0.
[16]
HU X M, ZHOU J H, LI Y, et al. Added value of viscoelasticity for MRI-based prediction of ki-67 expression of hepatocellular carcinoma using a deep learning combined radiomics (DLCR) model[J/OL]. Cancers (Basel), 2022, 14(11): 2575 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/35681558/. DOI: 10.3390/cancers14112575.
[17]
DONG M C, LI Q, LIU X Y. Research status and progress of Glypican-3 and liver carcinoma[J]. Chin J Lab Med, 2020, 43(2): 199-202. DOI: 10.3760/cma.j.issn.1009-9158.2020.02.001.
[18]
DEVAN A R, NAIR B, PRADEEP G K, et al. The role of glypican-3 in hepatocellular carcinoma: Insights into diagnosis and therapeutic potential[J/OL]. Eur J Med Res, 2024, 29(1): 490 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/39369212/. DOI: 10.1186/s40001-024-02073-2.
[19]
DONG S Y, SUN W, XU B, et al. Quantitative image features of gadoxetic acid-enhanced MRI for predicting glypican-3 expression of small hepatocellular carcinoma ≤3 cm[J/OL]. Clin Radiol, 2023, 78(10): e764-e772 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/37500336/. DOI: 10.1016/j.crad.2023.06.009.
[20]
ZHANG N, WU M H, YU C J, et al. Preoperative prediction of GPC3 positive hepatocellular carcinoma and postoperative recurrence with the LI-RADS features on gadoxetate disodium-enhanced MRI[J]. Chin J Radiol, 2024, 58(1): 64-70. DOI: 10.3760/cma.j.cn112149-20230922-00224.
[21]
YANG Z G, YANG P C, XU Y S, et al. Value of image-clinical multi-parameter combination in predicting GPC3 expression in hepatocellular carcinoma[J]. J Lanzhou Univ Med Sci, 2023, 49(2): 33-38, 43. DOI: 10.13885/j.issn.1000-2812.2023.02.006.
[22]
CHEN Y D, QIN Y, WU Y A, et al. Preoperative prediction of glypican-3 positive expression in solitary hepatocellular carcinoma on gadoxetate-disodium enhanced magnetic resonance imaging[J/OL]. Front Immunol, 2022, 13: 973153 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/36091074/. DOI: 10.3389/fimmu.2022.973153.
[23]
SONG Y, ZHANG Y Y, YU Q, et al. A nomogram based on LI-RADS features, clinical indicators and quantitative contrast-enhanced MRI parameters for predicting glypican-3 expression in hepatocellular carcinoma[J/OL]. Front Oncol, 2023, 13: 1123141 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/36824129/. DOI: 10.3389/fonc.2023.1123141.
[24]
SUN W, ZHAO J T, GAO S S, et al. Study of magnetic resonance imaging based on liver imaging reporting and data system for evaluating phosphatidylinositol proteoglycan-3 expression in hepatocellular carcinoma[J]. Chin J Hepatol, 2022(8): 866-872. DOI: 10.3760/cma.j.cn501113-20210506-00222.
[25]
ZHANG N, WU M H, ZHOU Y R, et al. Radiomics nomogram for prediction of glypican-3 positive hepatocellular carcinoma based on hepatobiliary phase imaging[J/OL]. Front Oncol, 2023, 13: 1209814 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/37841420/. DOI: 10.3389/fonc.2023.1209814.
[26]
LI S Q, YANG C X, WU C M, et al. Prediction of glypican-3 expression in hepatocellular carcinoma using multisequence magnetic resonance imaging-based histology nomograms[J]. Quant Imaging Med Surg, 2024, 14(7): 4436-4449. DOI: 10.21037/qims-24-111.
[27]
HAN Z W, DAI H T, CHEN X L, et al. Delta-radiomics models based on multi-phase contrast-enhanced magnetic resonance imaging can preoperatively predict glypican-3-positive hepatocellular carcinoma[J/OL]. Front Physiol, 2023, 14: 1138239 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/37601639/. DOI: 10.3389/fphys.2023.1138239.
[28]
ZHUO J Y, LU D, TAN W Y, et al. CK19-positive hepatocellular carcinoma is a characteristic subtype[J]. J Cancer, 2020, 11(17): 5069-5077. DOI: 10.7150/jca.44697.
[29]
WEI S Y, BAO M Y, MA F F, et al. CK19 predicts recurrence and prognosis of HBV positive HCC[J]. J Gastrointest Surg, 2022, 26(2): 341-351. DOI: 10.1007/s11605-021-05107-w.
[30]
HU X X, WANG W T, YANG L, et al. MR features based on LI-RADS identify cytokeratin 19 status of hepatocellular carcinomas[J]. Eur J Radiol, 2019, 113: 7-14. DOI: 10.1016/j.ejrad.2019.01.036.
[31]
ZHANG L Q, ZHOU H S, ZHANG X Q, et al. A radiomics nomogram for predicting cytokeratin 19-positive hepatocellular carcinoma: a two-center study[J/OL]. Front Oncol, 2023, 13: 1174069 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/37182122/. DOI: 10.3389/fonc.2023.1174069.
[32]
ZHENG W J, XING Z, XIONG M L, et al. The value of gadobenate dimeglumine multi-phase enhanced MRI in predicting the expression of cytokeratin19 in hepatocellular carcinoma[J]. Chin J Radiol, 2021, 55(6): 644-649. DOI: 10.3760/cma.j.cn112149-20200428-00623.
[33]
CHOI S Y, KIM S H, PARK C K, et al. Imaging features of gadoxetic acid-enhanced and diffusion-weighted MR imaging for identifying cytokeratin 19-positive hepatocellular carcinoma: a retrospective observational study[J]. Radiology, 2018, 286(3): 897-908. DOI: 10.1148/radiol.2017162846.
[34]
KITAO A, MATSUI O, YONEDA N, et al. The uptake transporter OATP8 expression decreases during multistep hepatocarcinogenesis: correlation with gadoxetic acid enhanced MR imaging[J]. Eur Radiol, 2011, 21(10): 2056-2066. DOI: 10.1007/s00330-011-2165-8.
[35]
RHEE H, AN C, KIM H Y, et al. Hepatocellular carcinoma with irregular rim-like arterial phase hyperenhancement: more aggressive pathologic features[J]. Liver Cancer, 2019, 8(1): 24-40. DOI: 10.1159/000488540.
[36]
CHEN J J, LIU D X, GUO Y X, et al. Preoperative identification of cytokeratin 19 status of hepatocellular carcinoma based on diffusion kurtosis imaging[J]. Abdom Radiol (NY), 2023, 48(2): 579-589. DOI: 10.1007/s00261-022-03736-6.
[37]
GUO Y X, CHEN J J, ZHANG Y F, et al. Differentiating Cytokeratin 19 expression of hepatocellular carcinoma by using multi-b-value diffusion-weighted MR imaging with mono-exponential, stretched exponential, intravoxel incoherent motion, diffusion kurtosis imaging and fractional order Calculus models[J/OL]. Eur J Radiol, 2022, 150: 110237 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/35278979/. DOI: 10.1016/j.ejrad.2022.110237.
[38]
WANG W T, GU D S, WEI J W, et al. A radiomics-based biomarker for cytokeratin 19 status of hepatocellular carcinoma with gadoxetic acid-enhanced MRI[J]. Eur Radiol, 2020, 30(5): 3004-3014. DOI: 10.1007/s00330-019-06585-y.
[39]
CHEN Y Y, CHEN J, ZHANG Y, et al. Preoperative prediction of cytokeratin 19 expression for hepatocellular carcinoma with deep learning radiomics based on gadoxetic acid-enhanced magnetic resonance imaging[J]. J Hepatocell Carcinoma, 2021, 8: 795-808. DOI: 10.2147/JHC.S313879.
[40]
DING C H, YAN F Z, XU B N, et al. PRMT3 drives PD-L1-mediated immune escape through activating PDHK1-regulated glycolysis in hepatocellular carcinoma[J/OL]. Cell Death Dis, 2025, 16(1): 158 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/40050608/. DOI: 10.1038/s41419-025-07482-7.
[41]
LIANG B G, ZHENG Y M, SHEN H Y, et al. Cordycepin mediates pyroptosis in HCC through the upregulation of TXNIP and synergizes with anti-PD-L1 immunotherapy[J/OL]. Hepatol Commun, 2025, 9(3): e0633 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/40008893/. DOI: 10.1097/HC9.0000000000000633.
[42]
SUN L, MU L W, ZHOU J, et al. Imaging features of gadoxetic acid-enhanced MR imaging for evaluation of tumor-infiltrating CD8 cells and PD-L1 expression in hepatocellular carcinoma[J]. Cancer Immunol Immunother, 2022, 71(1): 25-38. DOI: 10.1007/s00262-021-02957-w.
[43]
KANG J G, HAN K, CHUNG T, et al. Prediction of PD-L1 expression in unresectable hepatocellular carcinoma with gadoxetic acid-enhanced MRI[J/OL]. Eur J Radiol, 2024, 181: 111772 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/39383627/. DOI: 10.1016/j.ejrad.2024.111772.
[44]
GONG X Q, LIU N, TAO Y Y, et al. Radiomics models based on multisequence MRI for predicting PD-1/PD-L1 expression in hepatocellular carcinoma[J/OL]. Sci Rep, 2023, 13(1): 7710 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/37173350/. DOI: 10.1038/s41598-023-34763-y.
[45]
TIAN Y C, KOMOLAFE T E, ZHENG J, et al. Assessing PD-L1 expression level via preoperative MRI in HCC based on integrating deep learning and radiomics features[J/OL]. Diagnostics (Basel), 2021, 11(10): 1875 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/34679573/. DOI: 10.3390/diagnostics11101875.
[46]
TAO Y Y, SHI Y, GONG X Q, et al. Radiomic analysis based on magnetic resonance imaging for predicting PD-L2 expression in hepatocellular carcinoma[J/OL]. Cancers (Basel), 2023, 15(2): 365 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/36672315/. DOI: 10.3390/cancers15020365.
[47]
HECTORS S J, LEWIS S, BESA C, et al. MRI radiomics features predict immuno-oncological characteristics of hepatocellular carcinoma[J]. Eur Radiol, 2020, 30(7): 3759-3769. DOI: 10.1007/s00330-020-06675-2.
[48]
OLIVIER M, HOLLSTEIN M, HAINAUT P. TP53 mutations in human cancers: origins, consequences, and clinical use[J/OL]. Cold Spring Harb Perspect Biol, 2010, 2(1): a001008 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/20182602/. DOI: 10.1101/cshperspect.a001008.
[49]
HU J, CAO J, TOPATANA W, et al. Targeting mutant p53 for cancer therapy: direct and indirect strategies[J/OL]. J Hematol Oncol, 2021, 14(1): 157 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/34583722/. DOI: 10.1186/s13045-021-01169-0.
[50]
WENG J F, XIAO Y Y, LIU J, et al. Exploring the MRI and clinical features of P53-mutated hepatocellular carcinoma[J]. J Hepatocell Carcinoma, 2024, 11: 1653-1674. DOI: 10.2147/JHC.S462979.
[51]
JEON Y, KWON S M, RHEE H, et al. Molecular and radiopathologic spectrum between HCC and intrahepatic cholangiocarcinoma[J]. Hepatology, 2023, 77(1): 92-108. DOI: 10.1002/hep.32397.
[52]
KITAO A, MATSUI O, ZHANG Y, et al. Dynamic CT and gadoxetic acid-enhanced MRI characteristics of P53-mutated hepatocellular carcinoma[J/OL]. Radiology, 2023, 306(2): e220531 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/36219111/. DOI: 10.1148/radiol.220531.
[53]
LIU X Y, GUO Y, ZHAO L, et al. Can MRI features predict clinically relevant hepatocellular carcinoma genetic subtypes [J]. Abdom Radiol (NY), 2023, 48(6): 1955-1964. DOI: 10.1007/s00261-023-03876-3.
[54]
WANG Q Y, ZHU M H, LI W D, et al. CBX7 promotes choroidal neovascularization by activating the HIF-1α/VEGF pathway in choroidal vascular endothelial cells[J/OL]. Exp Eye Res, 2024, 247: 110057 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/39179168/. DOI: 10.1016/j.exer.2024.110057.
[55]
HUANG Z Q, MENG X J, XIU J J, et al. MR imaging in hepatocellular carcinoma: correlations between MRI features and molecular marker VEGF[J]. Med Oncol, 2014, 31(12): 313 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/25367856/. DOI: 10.1007/s12032-014-0313-0.
[56]
KANEMATSU M, OSADA S, AMAOKA N, et al. Expression of vascular endothelial growth factor in hepatocellular carcinoma and the surrounding liver and correlation with MRI findings[J]. AJR Am J Roentgenol, 2005, 184(3): 832-841. DOI: 10.2214/ajr.184.3.01840832.
[57]
HEO S H, JEONG Y Y, SHIN S S, et al. Apparent diffusion coefficient value of diffusion-weighted imaging for hepatocellular carcinoma: correlation with the histologic differentiation and the expression of vascular endothelial growth factor[J]. Korean J Radiol, 2010, 11(3): 295-303. DOI: 10.3348/kjr.2010.11.3.295.
[58]
FAN T T, LI S J, LI K, et al. A potential prognostic marker for recognizing VEGF-positive hepatocellular carcinoma based on magnetic resonance radiomics signature[J/OL]. Front Oncol, 2022, 12: 857715 [2025-03-01]. https://pubmed.ncbi.nlm.nih.gov/35444942/. DOI: 10.3389/fonc.2022.857715.
[59]
YANG C, ZHANG Z M, ZHAO Z P, et al. Radiomic analysis based on magnetic resonance imaging for the prediction of VEGF expression in hepatocellular carcinoma patients[J]. Abdom Radiol (NY), 2024, 49(11): 3824-3833. DOI: 10.1007/s00261-024-04427-0.
[60]
DAI H T, YAN C, HUANG W R, et al. A nomogram based on MRI visual decision tree to evaluate vascular endothelial growth factor in hepatocellular carcinoma[J]. J Magn Reson Imaging, 2025, 61(2): 970-982. DOI: 10.1002/jmri.29491.
[61]
CAMPANI C, IMBEAUD S, COUCHY G, et al. Circulating tumour DNA in patients with hepatocellular carcinoma across tumour stages and treatments[J]. Gut, 2024, 73(11): 1870-1882. DOI: 10.1136/gutjnl-2024-331956.

PREV Research progress in the preoperative evaluation of lymphovascular invasion of breast cancer by imaging
NEXT Research progress of radiomics in the prognosis of hepatocellular carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn