Share:
Share this content in WeChat
X
Review
Research progress of magnetic resonance elastography in pancreatic diseases
SHEN Zhaowu  JIANG Jie 

Cite this article as: SHEN Z W, JIANG J. Research progress of magnetic resonance elastography in pancreatic diseases[J]. Chin J Magn Reson Imaging, 2025, 16(6): 201-206, 234. DOI:10.12015/issn.1674-8034.2025.06.031.


[Abstract] In recent years, the global incidence of pancreatic diseases has shown a yearly increasing trend. Influenced by factors such as inflammation, tumors, or lifestyle habits, the mechanical properties of pancreatic tissue may undergo alterations. Quantitative assessment of pancreatic tissue mechanics offers novel perspectives for the early and precise diagnosis and treatment of pancreatic pathologies. Magnetic resonance elastography (MRE), an emerging non-invasive imaging technique combining low-frequency mechanical vibrations with magnetic resonance imaging (MRI), enables non-invasive quantitative evaluation of mechanical characteristics in both normal and pathological tissues. This technology overcomes the limitations of conventional imaging modalities, which rely solely on morphological changes and cannot assess tissue mechanical properties. Existing review articles have demonstrated MRE's capability in differentiating healthy pancreatic tissue from pathological lesions and distinguishing benign versus malignant tumors. However, they have not yet systematically addressed its applications in pancreatic inflammatory conditions, histopathological tumor subtyping, therapeutic efficacy evaluation, complication prediction, or organ transplantation. Through a comprehensive review of clinical applications and research advancements of MRE in pancreatic diseases, the authors identified its unique advantages in evaluating pancreatic fibrosis, pancreatitis, diagnosing early-stage neoplasms, predicting treatment outcomes and complications, as well as assessing graft viability in transplantation settings. However, due to factors including the deep anatomical location of the pancreas, complexity of pancreatic pathologies, limited spatial resolution of MRE imaging, and technical challenges in image post processing, there remains a lack of standardized protocols for pancreatic MRE applications. Future advancements may involve technical optimization strategies, high-field-strength MRI equipment, multimodal imaging approaches, and artificial intelligence (AI)-assisted methodologies to address these limitations. This review aims to enhance clinicians' understanding of MRE's diagnostic potential while providing novel perspectives and research directions for future investigations in pancreatic pathology.
[Keywords] pancreatic;pancreatitis;pancreatic carcinoma;magnetic resonance imaging;magnetic resonance elastography

SHEN Zhaowu   JIANG Jie*  

Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China

Corresponding author: JIANG J, E-mail: 15812119545@163.com

Conflicts of interest   None.

Received  2025-03-10
Accepted  2025-05-20
DOI: 10.12015/issn.1674-8034.2025.06.031
Cite this article as: SHEN Z W, JIANG J. Research progress of magnetic resonance elastography in pancreatic diseases[J]. Chin J Magn Reson Imaging, 2025, 16(6): 201-206, 234. DOI:10.12015/issn.1674-8034.2025.06.031.

[1]
MUTHUPILLAI R, LOMAS D J, ROSSMAN P J, et al. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves[J]. Science, 1995, 269(5232): 1854-1857. DOI: 10.1126/science.7569924.
[2]
CHEN J, CHEN J, HEILMAN J A, et al. Abdominal MR elastography with multiple driver arrays: performance and repeatability[J]. Abdom Radiol (NY), 2023, 48(6): 1945-1954. DOI: 10.1007/s00261-023-03866-5.
[3]
MANDUCA A, BAYLY P J, EHMAN R L, et al. MR elastography: Principles, guidelines, and terminology[J]. Magn Reson Med, 2021, 85(5): 2377-2390. DOI: 10.1002/mrm.28627.
[4]
ATAMANIUK V, HAŃCZYK Ł, CHEN J, et al. 3D vector MR elastography applications in small organs[J]. Magn Reson Imaging, 2024, 112: 54-62. DOI: 10.1016/j.mri.2024.06.005.
[5]
PEERY A F, CROCKETT S D, MURPHY C C, et al. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: update 2021[J]. Gastroenterology, 2022, 162(2): 621-644. DOI: 10.1053/j.gastro.2021.10.017.
[6]
YUAN L, JI M Y, WANG S S, et al. Early prediction of acute pancreatitis with acute kidney injury using abdominal contrast-enhanced CT features[J/OL]. iScience, 2024, 27(10): 111058 [2024-08-10]. https://onlinelibrary.wiley.com/doi/10.1002/jmri.25679. DOI: 10.1016/j.isci.2024.111058.
[7]
LUO W H, WANG J, CHEN H, et al. Epidemiology of pancreatic cancer: New version, new vision[J]. Chin J Cancer Res, 2023, 35(5): 438-450. DOI: 10.21147/j.issn.1000-9604.2023.05.03.
[8]
LYU K, YAN X Y. Progresses of ultrasound in diagnosis and treatment of pancreatic diseases[J]. Chin J Med Imag Technol, 2024, 40(4): 481-484. DOI: 10.13929/j.issn.1003-3289.2024.04.001.
[9]
SERAI S D, ABU-EL-HAIJA M, TROUT A T. 3D MR elastography of the pancreas in children[J]. Abdom Radiol (NY), 2019, 44(5): 1834-1840. DOI: 10.1007/s00261-019-01903-w.
[10]
STEINKOHL E, BERTOLI D, HANSEN T M, et al. Practical and clinical applications of pancreatic magnetic resonance elastography: a systematic review[J]. Abdom Radiol (NY), 2021, 46(10): 4744-4764. DOI: 10.1007/s00261-021-03143-3.
[11]
ZHANG X Y, WANG X C. Research progress of magnetic resonance elastography in abdominal and pelvic cancer[J]. Chin J Magn Reson Imag, 2024, 15(5): 216-221. DOI: 10.12015/issn.1674-8034.2024.05.035.
[12]
MEYER T, CASTELEIN J, SCHATTENFROH J, et al. Magnetic resonance elastography in a nutshell: tomographic imaging of soft tissue viscoelasticity for detecting and staging disease with a focus on inflammation[J/OL]. Prog Nucl Magn Reson Spectrosc, 2024, 144/145: 1-14 [2025-01-16]. https://pubmed.ncbi.nlm.nih.gov/39645347/. DOI: 10.1016/j.pnmrs.2024.05.002.
[13]
SNELLINGS J, KESHI E, TANG P, et al. Solid fraction determines stiffness and viscosity in decellularized pancreatic tissues[J/OL]. Biomater Adv, 2022, 139: 212999 [2024-07-25]. https://linkinghub.elsevier.com/retrieve/pii/S277295082200276X. DOI: 10.1016/j.bioadv.2022.212999.
[14]
SHI S Y, WANG L Q, PENG Z P, et al. Multi-frequency magnetic resonance elastography of the pancreas: measurement reproducibility and variance among healthy volunteers[J/OL]. Gastroenterol Rep (Oxf), 2022, 10: goac033 [2024-08-26]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9336557/. DOI: 10.1093/gastro/goac033.
[15]
UFFMANN K, LADD M E. Actuation systems for MR elastography: design and applications[J]. IEEE Eng Med Biol Mag, 2008, 27(3): 28-34. DOI: 10.1109/EMB.2007.910268.
[16]
LIU Y, WANG M, JI R, et al. Differentiation of pancreatic ductal adenocarcinoma from inflammatory mass: added value of magnetic resonance elastography[J]. Clin Radiol, 2018, 73(10): 865-872. DOI: 10.1016/j.crad.2018.05.016.
[17]
YANG J Y, QIU B S. The advance of magnetic resonance elastography in tumor diagnosis[J/OL]. Front Oncol, 2021, 11: 722703 [2024-07-10]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8438294/. DOI: 10.3389/fonc.2021.722703.
[18]
GARTEISER P, SAHEBJAVAHER R S, BEEK L C TER, et al. Rapid acquisition of multifrequency, multislice and multidirectional MR elastography data with a fractionally encoded gradient echo sequence[J]. NMR Biomed, 2013, 26(10): 1326-1335. DOI: 10.1002/nbm.2958.
[19]
SUI Y, ARANI A, TRZASKO J D, et al. TURBINE-MRE: a 3D hybrid radial-Cartesian EPI acquisition for MR elastography[J]. Magn Reson Med, 2021, 85(2): 945-952. DOI: 10.1002/mrm.28445.
[20]
ARUNACHALAM S P, ROSSMAN P J, ARANI A, et al. Quantitative 3D magnetic resonance elastography: Comparison with dynamic mechanical analysis[J]. Magn Reson Med, 2017, 77(3): 1184-1192. DOI: 10.1002/mrm.26207.
[21]
VAN SCHELT A S, GOTTWALD L M, WASSENAAR N P M, et al. Single breath-hold MR elastography for fast biomechanical probing of pancreatic stiffness[J]. J Magn Reson Imaging, 2024, 59(2): 688-698. DOI: 10.1002/jmri.28773.
[22]
XU Y L, CAI X L, SHI Y, et al. Normative pancreatic stiffness levels and related influences established by magnetic resonance elastography in volunteers[J]. J Magn Reson Imaging, 2020, 52(2): 448-458. DOI: 10.1002/jmri.27052.
[23]
ROUSEK M, ZÁRUBA P, PUDIL J, et al. Surgical treatment of chronic pancreatitis with an inflammatory pancreatic head mass: a retrospective study[J/OL]. BMC Gastroenterol, 2024, 24(1): 345 [2025-01-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448026/. DOI: 10.1186/s12876-024-03338-0.
[24]
LI X, ZHOU J B, WANG X, et al. Pancreatic cancer and fibrosis: Targeting metabolic reprogramming and crosstalk of cancer-associated fibroblasts in the tumor microenvironment[J/OL]. Front Immunol, 2023, 14: 1152312 [2024-10-11]. https://www.frontiersin.org/articles/10.3389/fimmu.2023.1152312/full. DOI: 10.3389/fimmu.2023.1152312.
[25]
THIERENS N, VERDONK R C, LÖHR J M, et al. Chronic pancreatitis[J]. Lancet, 2025, 404(10471): 2605-2618. DOI: 10.1016/s0140-6736(24)02187-1.
[26]
TIRKES T, YADAV D, CONWELL D L, et al. Magnetic resonance imaging as a non-invasive method for the assessment of pancreatic fibrosis (MINIMAP): a comprehensive study design from the consortium for the study of chronic pancreatitis, diabetes, and pancreatic cancer[J]. Abdom Radiol (NY), 2019, 44(8): 2809-2821. DOI: 10.1007/s00261-019-02049-5.
[27]
YAMASHITA Y, ASHIDA R, KITANO M. Imaging of fibrosis in chronic pancreatitis[J/OL]. Front Physiol, 2022, 12: 800516 [2024-08-23]. https://www.frontiersin.org/articles/10.3389/fphys.2021.800516/full. DOI: 10.3389/fphys.2021.800516.
[28]
STEINKOHL E, OLESEN S S, HANSEN T M, et al. T1 relaxation times and MR elastography-derived stiffness: new potential imaging biomarkers for the assessment of chronic pancreatitis[J]. Abdom Radiol (NY), 2021, 46(12): 5598-5608. DOI: 10.1007/s00261-021-03276-5.
[29]
WANG M, GAO F, WANG X Q, et al. Magnetic resonance elastography and T1 mapping for early diagnosis and classification of chronic pancreatitis[J/OL]. J Magn Reson Imaging, 2018: 10.1002/jmri.26008 [2024-08-23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6138575/. DOI: 10.1002/jmri.26008.
[30]
ZHANG B B, DAI N, YANG Y, et al. Uncommon imaging features in patients with autoimmune pancreatitis[J]. Chin J Magn Reson Imag, 2024, 15(6): 123-128. DOI: 10.12015/issn.1674-8034.2024.06.018.
[31]
CHRISTODOULIDIS G, KOULIOU M N, KOUMARELAS K E. Understanding autoimmune pancreatitis: Clinical features, management challenges, and association with malignancies[J]. World J Gastroenterol, 2024, 30(15): 2091-2095. DOI: 10.3748/wjg.v30.i15.2091.
[32]
LANZILLOTTA M, VUJASINOVIC M, LÖHR J M, et al. Update on autoimmune pancreatitis and IgG4-related disease[J]. United European Gastroenterol J, 2025, 13(1): 107-115. DOI: 10.1002/ueg2.12738.
[33]
SHI Y, CANG L Z, ZHANG X Y, et al. The use of magnetic resonance elastography in differentiating autoimmune pancreatitis from pancreatic ductal adenocarcinoma: a preliminary study[J]. Eur J Radiol, 2018, 108: 13-20. DOI: 10.1016/j.ejrad.2018.09.001.
[34]
ZEREM E, KURTCEHAJIC A, KUNOSIĆ S, et al. Current trends in acute pancreatitis: diagnostic and therapeutic challenges[J]. World J Gastroenterol, 2023, 29(18): 2747-2763. DOI: 10.3748/wjg.v29.i18.2747.
[35]
SHI Y, LIU Y, LIU Y Q, et al. Early diagnosis and severity assessment of acute pancreatitis (AP) using MR elastography (MRE) with spin-echo echo-planar imaging[J]. J Magn Reson Imaging, 2017, 46(5): 1311-1319. DOI: 10.1002/jmri.25679.
[36]
SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA A Cancer J Clin, 2023, 73(1): 17-48. DOI: 10.3322/caac.21763.
[37]
HUANG C, IOVANNA J, SANTOFIMIA-CASTAÑO P. Targeting fibrosis: the bridge that connects pancreatitis and pancreatic cancer[J/OL]. Int J Mol Sci, 2021, 22(9): 4970 [2024-07-30] https://creativecommons.org/licenses/by/4.0/. DOI: 10.3390/ijms22094970.
[38]
LIU D X, CHEN J J, ZHANG Y F, et al. Magnetic resonance elastography-derived stiffness: potential imaging biomarker for differentiation of benign and malignant pancreatic masses[J]. Abdom Radiol (NY), 2023, 48(8): 2604-2614. DOI: 10.1007/s00261-023-03956-4.
[39]
MARTICORENA GARCIA S R, ZHU L, GÜLTEKIN E, et al. Tomoelastography for measurement of tumor volume related to tissue stiffness in pancreatic ductal adenocarcinomas[J]. Invest Radiol, 2020, 55(12): 769-774. DOI: 10.1097/RLI.0000000000000704.
[40]
GÜLTEKIN E, WETZ C, BRAUN J, et al. Added value of tomoelastography for characterization of pancreatic neuroendocrine tumor aggressiveness based on stiffness[J]. Cancers (Basel), 2021, 13(20): 5185 [2024-09-11]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8533708/. DOI: 10.3390/cancers13205185.
[41]
XU J X, HUANG X S, ZHENG X Z, et al. CT and MRI diagnosis of small tumors and tumor-like lesions of pancreas[J]. Radiol Pract, 2024, 39(11): 1428-1434. DOI: 10.13609/j.cnki.1000-0313.2024.11.001.
[42]
SALAVATI H, DEBBAUT C, PULLENS P, et al. Interstitial fluid pressure as an emerging biomarker in solid tumors[J/OL]. Biochim Biophys Acta Rev Cancer, 2022, 1877(5): 188792 [2025-01-03]. https://linkinghub.elsevier.com/retrieve/pii/S0304419X22001172. DOI: 10.1016/j.bbcan.2022.188792.
[43]
ZHU L, SUN Z Y, DAI M H, et al. Tomoelastography and pancreatic extracellular volume fraction derived from MRI for predicting clinically relevant postoperative pancreatic fistula[J]. J Magn Reson Imaging, 2024, 59(3): 1074-1082. DOI: 10.1002/jmri.28788.
[44]
MAK L Y, FUNG J, LO G, et al. Impact of liver graft steatosis on long-term post-transplant hepatic steatosis and fibrosis via magnetic resonance quantification[J/OL]. Front Med (Lausanne), 2025, 11: 1502055 [2025-02-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782125/. DOI: 10.3389/fmed.2024.1502055.
[45]
ELSINGERGY M M, VITERI B, OTERO H J, et al. Imaging fibrosis in pediatric kidney transplantation: a pilot study[J/OL]. Pediatr Transplant, 2023, 27(5): e14540 [2024-11-28]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10824264/. DOI: 10.1111/petr.14540.
[46]
WOLF M, DARWISH O, NEJI R, et al. Magnetic resonance elastography resolving all gross anatomical segments of the kidney during controlled hydration[J/OL]. Front Physiol, 2024, 15: 1327407 [2025-01-18]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10880033/. DOI: 10.3389/fphys.2024.1327407..

PREV Advances in imaging to assess liver volume
NEXT Research progress in predicting gastric cancer neoadjuvant chemotherapy based on CT, MRI, and related technologies
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn